

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SCHEME OF TEACHING AND EXAMINATION B. Tech. Eight Semester- ELECTRICAL AND ELECTRONICS ENGINEERING

B. Tech. (Electrical and Electronics Engineering) Eighth Semester

Effective from 2021-2022 Batch

SI. N	Board of Studies	Studies Courses (Subject) Course		Period per Week		Scheme of Examination			Tota Mar	Cred	
•	(BOS)		Code	L	Т	Р	Th	eory/]	Lab	ks 1	lit
						-	ESE	СТ	TA		
1.	Electrical and Electronics	High Voltage Engineering	EEE103801	3	1	-	100	20	30	150	4
2.	Electrical and Electronics	Professional Elective-IV (Refer Table-IV)	EEE103825	2	1	-	100	20	30	150	3
3.	Electrical and Electronics	Open Elective-III (Refer Table-V)	EEE100842	3	-	-	100	20	30	150	3
4.	Electrical and Electronics	High Voltage Engineering Lab	EEE103891	-	-	2	25	-	25	50	1
5.	Electrical and Electronics	Installation, Maintenance and Testing of Electrical Equipment Lab	EEE103892	-	-	2	25	-	25	50	1
6.	Electrical and Electronics	Capstone Project Phase II	EEE103893	-	-	16	300	-	150	450	8
		Total		8	2	20	650	60	290	1000	20

L: Lecture, T: Tutorial, P: Practical, ESE: End Semester Exam CT: Class test TA: Teacher's assessment

	Table IV : Professional Elective - IV						
Sl. No.	Board of Studies (BOS)	Course(Subject)	Course Code				
1.	Electrical & Electronics Engineering	Installation, Maintenance and Testing of Electrical Equipment	EEE103821				
2.	Electrical & Electronics Engineering	Big data and Hadoop	EEE103822				
3.	Electrical & Electronics Engineering	Advanced Digital System Design	EEE103823				
4.	Electrical & Electronics Engineering	Introduction to VLSI Design	EEE103824				
5.	Electrical & Electronics Engineering	Energy Auditing and Management	EEE103825				

		October 2022	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2022-23 Onwards

Shri Shankaracharya Technical Campus, Bhilai

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

B. Tech. Eighth Semester- DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Table V OPEN ELECTIVE IIIEIGHTH SEMESTER B.TECH.

SI. No.	Board of Studies (BOS)	Course(Subject)	Course Code
1	Civil Engineering	Disaster Management	CE100841
2	Civil Engineering	Construction Management	CE100842
3	Civil Engineering	Ecology and sustainable development	CE100843
4	Computer Science and Engineering	Management Information System	CSE100841
5	Computer Science and Engineering	Decision Support System	CSE100842
6	Computer Science and Engineering	Cyber Security	CSE100843
7	Electrical Engineering	Flexible AC Transmission System	EE100841
8	Electrical Engineering	Distributed Generation	EE100842
9	Electrical & Electronics Engineering	Robotics and Automation	EEE100841
10	Electrical & Electronics Engineering	Utilization of Electrical Energy	EEE100842
11	Electronics and telecommunication	Virtual Instrumentation	ET100841
12	Electronics and telecommunication	Enterprise Resource Planning	ET100842
13	Information Technology	Parallel Computing	IT100841
14	Information Technology	Wireless and Mobile Communication	IT100842
15	Mechanical Engineering	Theory of Composite Materials	ME100841
16	Mechanical Engineering	Micro fluidics	ME100842
17	Mechanical Engineering	Micro and Nano Manufacturing	ME100843

Note:

(a) Abbreviations used : L-Lecture, T- Tutorial, P- Practical, ESE- End Semester Exam, CT- Class Test, TA-Teacher's Assessment

- (b) 1/4th of total strength of students subject to minimum of 20 students is required to offer an elective in the department in a particular academic session.
- (c) Choice of elective course once made for an examination cannot be changed in future examinations.
- (d) The duration of end semester examination of all theory papers will be of three hours.

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS B. Tech. Eighth Semester- DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

SYLLABUS

B.TECH. (DEPARTMENT OF

ELECTRICAL & ELECTRONICS

ENGINEERING)

EIGHTH SEMESTER

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS

Subject Code EEE103801	High Voltage Engineering	L = 3	T = 1	P = 0	Credits = 4
Evaluation	ESE	СТ	ТА	Total	ESE Duration
Scheme	100	20	30	150	3 Hours

Course Objectives	Course Outcomes
The objective of the course to:	Students will be able to:
 The course is an advanced course in high voltage technology and electrical insulating materials. It deals with basic gaseous, liquid and solid dielectric breakdown theories. It also contains important experimental methods of high voltage generation and measurement The course makes the students familiar with various applications where high voltage field is used. 	 CO1 Describe the various breakdown theories for gaseous, liquid and solid dielectric CO2 Describe the generating methods for high DC, AC, and impulse CO3 Describe the measuring methods for high DC, AC and impulse CO4 Compute the breakdown strength of gas filled insulation systems with sphere gap
UNIT 1	CO1
Introduction to Breakdown theory: Levels of high and its limitations, Electrical insulation and dielectric and non-uniform fields (weekly and extremely), Type and solids, Types of ionizations - impact, thermal an avalanche in uniform field, Townsend's first and seco Streamer theory of breakdown, Paschen's law.	voltages, necessity of EHV10 Hrss, Electrical fields - Uniformes of insulation - gas, liquid,nd photo ionization, Electronond Criterion for breakdown,
UNIT 2	CO2
Breakdown in Solid Dielectrics: Breakdown mech Electromechanical breakdown, thermal breakdown, bre practice, Breakdown due to treeing & tracking, bre discharges	anism, Intrinsic breakdown, eakdown of solid dielectric in akdown due to the internal

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS

UNIT 3	CO3
Generation of High voltages: Generation of high D.C. voltages, half wa wave rectifier circuits, Van De Graff generators, Electro static Generators of high alternating voltages, cascade transformers, Generation of impulse Multistage Impulse generator, Marx circuit, Tripping & control of Impuls	ve & full s, Generation voltages, se generators.
Over Voltage phenomena and Insulation coordination Lightning phenomena as natural cause for overvoltage, Overvoltage due t surges and abnormal conditions, principles of insulation coordination. Pro substations from lightning stroke.	to switching otection of
UNIT 4	CO3
Measurement of High Voltages: Measurement of high D.C.voltage, Measurement of high A.C.& impulse voltages, series Impedance voltmeter, series capa voltmeter capacitance potential dividers & capacitance voltage transform Resistance potential dividers, Electrostatic voltmeter, Spark gap for mea high D.C., A.C. & impulse voltages, Potential divider for impulse voltage measurements, CRO for impulse voltage measurements.	easurement acitance ners, surement of ge
UNIT 5	CO4
High Voltage Testing of Electrical Apparatus: Test on insulators, Dry over tests & withstand tests, Impulse flash over & withstand voltage test voltage tests on cables. Non-Destructive Testing: Measurement of dielect & loss factor, High voltage Schering Bridge.	/ & wet flash 8 Hrs , High ctric constant

Text Books:

S.			Edition	
No.	Title	Authors		Publisher
1	High Voltage Engineering	C.L. Wadhwa	2nd Edition	New Age International Ltd
2	High Voltage Engineering	M.S. Naidu & V. Kamraju	3rd Edition	Tata McGraw Hill

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS

B. Tech. Eighth Semester- DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

S.			Edition	
No.	Title	Authors		Publisher
1	An Introduction to High Voltage Engineering	Subir Ray	2 nd Edition	PHI
2	High voltage Engineering	D. V. Razevig and Chaurasia	2 nd Edition	Khanna pbs

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS

Subject Code EEE103821	Installation, Maintenance and Testing of Electrical Equipment	L = 2	T = 1	P = 0	Credits = 3
Fyaluation	ESE	СТ	TA	Total	ESE Duration
Scheme	100	20	30	150	3 Hours

Course Objectives	Course Outcomes	
The objective of the course to:	On successful completion of the	e course,
 Acquire knowledge on safety measures and precautions. 	the student will be able to:	
 Testing of DC and AC rotating machines and transformers Identify common troubles in Electrical machines and switch gear. 	CO1:- Understand the proc commissioning and Maintenance CO2:- Prepare the steps of maintenance methods / technic transformer CO3:- Suggest the trouble s methods to improve life of e equipment of Switchgear, Breaker CO4:- Perform required procedure for different 1 Machines using proper too method CO5:- Familiar about electricar regulations and rules during maintenance	cess of various ques for shooting electrical Circuit testing Rotating ols and al safety hotline
UNIT 1		CO1
Overview of Site Management, Electrical Safety		12 Hrs
Introduction to Site activities; Civil works, Erection Operation and Maintenance, Type and Scope of I programmed preventive maintenance, Safety man Recommended safety precautions against electric installations, Safety procedure during commissioni maintenance phase	, Testing & Commissioning, Maintenance, Advantages of agement, Electrical shocks, al shocks in LV and HV ing phase and Operation &	

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS

of sector

	1
UNIT 2	CO2
Transformer	10 Hrs
Important steps in maintenance of power transformer, maintenance schedule for attended and unattended transformer, causes of troubles and failure of power transformer, Dispatch and shipping, inspection, storage, procedure of filling oil in transformer tank, drying out, various commissioning tests on a power transformer, typical maintenance schedule for transformer up to 1000 KVA and above 1000KVA, transformer oil filtration.	
UNIT 3	CO3
Switchgear, Circuit Breaker	10Hrs
Introduction to switchgears and equipments in substation and their functions, Type tests, routine test and commissioning tests, high/low voltage ac circuit breakers (Air, Oil, Vacuum, SF6) possible troubles, causes and remedial actions for outdoor circuit breakers, maintenance of CB (Air, Oil, Vacuum, SF6), Trouble shooting of substation equipment	:
UNIT 4	CO4
Rotating Machines	10 Hrs
Standard designation for cooling and degree of protection, Installation and commissioning of introduction motor and rotating machines, drying out of electrical rotating machines, installation resistance measurements, Mechanical maintenance of rotating machines, Care, servicing and maintenance of motor, Troubles, causes, remedies and protective devices during respective abnormal condition in low voltage induction motor, Testing of induction motors.	- - - -
UNIT 5	CO5 8Hrs
Hotline Maintenance and Safety against Electric Fire	01115
Meaning and advantages of hot-line maintenance. Special type non conducting materials used for preparing tools for Hot line maintenance, Tools, Various types of Hot-line operations, safety during Hot line maintenance; Introduction to Electrical Fire Safety, Fire Fighting to extinguish Electrical Fire using Dry Powder type Fire extinguisher	
	icable for

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS

B. Tech. Eighth Semester- DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Text Books:

S. No.	Title	Authors	Edition	Publisher
1)	Testing, commissioning, operation and maintenance of Electrical equipments	S. Rao	6thEdn.	KhannaPublishers
2)	Installation maintenance and testing of Electrical Equipments	S. Tarlok	2nd 2001	S. K. Kataria & Sons

S. No.	Title	Authors	Edition	Publisher
1)	Electrical power equipment maintenance and testing	Paul Gill	2008	CRC Press
2)	Installation, Maintenance and testing vol. I & II	B.V.S. Rao	2008	S. Chand & Co

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS

Subject Code EEE103822	Big data and Hadoop	L = 2	T = 1	P = 0	Credits = 3
Evaluation Scheme	ESE	СТ	ТА	Total	ESE Duration
	100	20	30	150	3 Hours

Course Objectives	Course Ou	itcomes
The objective of the course to:	On successful complet	ion of the course
	the student	
1. The HDFS file system, MapReduce frameworks	will be able to:	
are studied in detail.	CO1: Understand the	e fundamentals o
 Hadoop tools like Hive, and Hbase, which provide interface to relational databases, are also covered as part of this course work. Analyzing data with unix tools Sorting. Map side and Reduce side joins. Implementation. Java and Mapreduce clients 	Big cloud and data arch CO2: Understand HD and Mapreduce frame them to solve complex require massive compu CO3: Use relational environment, using H tools of the Hadoop Ec CO4: Understand the	nitectures. DFS file structur eworks, and us problems, whic tation power data in a Hadoo Hive and Hbas osystem Comparison wit
	traditional databases.	
	CO5: Understand The	e Hive Shell.
UNIT 1		CO1
Introduction to Big Data		10 Hrs
What is Big Data? Why Big Data is Important. Meet and Analysis. Comparison with other systems. Grid C Hadoop. Apache Hadoop and the Hadoop Eco System Installation of Hadoop.	Hadoop. Data. Data St Computing. A brief histo m. Linux refresher; VM	torage ory of IWare
UNIT 2		CO2
The design of HDFS		10 Hrs
HDFS concepts Command-linene interface to Hadoop	Distributed File System	n
(HDFS). Hadoop File systems. Interfaces. Java Interfa	ce to Hadoop. Anatomy	y of a
file read. Anatomy of a file writes. Replica placement	and Coherency Model.	
		Applicable for

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS

B. Tech. Eighth Semester- DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Parallel copying with distcp, Keeping an HDFS cluster balanced.	
UNIT 3	CO3 10Hrs
Introduction & Analyzing data with Unix tools	_ • ~
Analyzing data with hadoop. Java MapReduce classes (new API). Data flow, combiner functions, Running a distributed Map Reduce Job. Configuration API. Setting up the development environment. Managing configuration. Writing a unit test with MRUnit. Running a job in local job runner. Running on a cluster. Launching a job. The Map Reduce Web UI.	
UNIT 4	CO4 12 Hrs
Classic Map Reduce. Job submission.	12 1115
Job Initialization. Task Assignment. Task execution .Progress and status updates. Job Completion. Shuffle and sort on Map and reducer side. Configuration tuning. Map Reduce Types. Input formats. Output formats, Sorting. Map side and Reduce side joins.	
UNIT 5	CO5 9 Hrs
The Hive Shell	/ 1115
Hive services. Hive clients. The meta store. Comparison with traditional databases. HiveQl. Hbasics. Concepts. Implementation. Java and Mapreduce clients. Loading data, web queries.	

S.			Edition	
No.	Title	Authors		Publisher
1	The Definitive Guide	Tom White, Hadoop	3rd Edition, 2012	O'Reilly Publications
2	Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data	Dirk deRoos, Chris Eaton	1 edition, 2011	McGraw Hill Osborne Media

Text Books

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS

B. Tech. Eighth Semester- DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

S. No.	Title	Authors	Edition	Publisher
1.	Hadoop Operations	Eric Summers	2012	O'Reilly Media

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS

Subject Code EEE103823	Advanced Digital System Design	L = 2	T = 1	P = 0	Credits = 3
Evaluation	ESE	СТ	ТА	Total	ESE Duration
Scheme	100	20	30	150	3 Hours

	Course Objectives	Course Outcomes	
The o	bjective of the course to:	On successful completion of th	e course,
1.	Demonstrate Logic simulation, Design	the student will be able to:	
	verification, Verilog.	CO1: Demonstrate logic s	simulation,
2.	Illustrate behavioral modeling, Boolean-	Design verification, Verilog.	
	Equation, Flip-Flops and Latches;	CO2: Work on Flip-Flops and	d Latches;
	multiplexers, encoders, and decoders,	multiplexers, encoders, and	decoders,
3	Demonstrate combinational logic: three-state	synchronizers for asynchronous	signals.
5.	devices and bus interfaces: Registered logic:	CO3: Design and implement	circuits on
	registers and counters; Resets; Divide and	combinational logic; Register	red logic;
	conquer: Partitioning a design.	registers and counters; Resets; I	Divide and
		conquer: Partitioning a design.	
		C04: Define basics of PI	LA; PAL;
		Programmability of PLDs;	CPLDs;
		FPGAS	inavita an
		Asynchronous Sequential Circu	it
UNI	Γ1	Asynchronous Sequential Circu	n.
			COI
Logie	c Design with Verilog:		10 Hrs
Struc	tural models of combinational logic: Logic sir	nulation Design verification	
and 7	Test methodology: Propagation delay: Truth-Ta	ble models of Combinational	
and	equential logic with Verilog	ble models of combinational	
and s	equential togle with verticg.		
UNI	Γ2		CO2
			10 Hrs
Logic	c Design with Behavioral Models:		
Daha		- hereite wel were de live en De els en	
Bena	vioral modeling; A brief look at data types for b	enavioral modeling; Boolean-	
Equa	tion – Based benavioral models of combinatio	onal logic; Propagation delay	
and c	continuous assignments; Latches and Level –	Sensitive circuits in Verilog;	
Cycli	c behavioral models of Flip-Flops and Latche	s; Cyclic behavior and edge	

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS

B. Tech. Eighth Semester- DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

detection; A comparison of styles for behavioral modeling; Behavioral models of	
multiplexers, encoders, and decoders	
UNIT 3	CO3
Synthesis of Combinational and Sequential Logic:	IOHrs
Synthesis of Combinational and Sequential Logic.	
Introduction to synthesis; Synthesis of combinational logic; Synthesis of sequential	
logic with latches; Synthesis of three state devices and bus interfaces; Synthesis of	
sequential logic with flip-flops; Synthesis of explicit state machines; Registered logic;	
State encoding; Synthesis of implicit state machines, registers and counters	
UNIT 4	CO4
Programmable Logic and Storage Devices:	12 Hrs
Programmable Logic devices: Storage devices: PLA: PAL: Programmability of PLDs:	12 Hrs
Programmable Logic and Storage Devices: Programmable logic devices; storage devices; PLA; PAL; Programmability of PLDs; CPLDs: FPGAs: Verlog-Based design flows for FPGAs: Synthesis with FPGAs.	12 Hrs
Programmable Logic and Storage Devices: Programmable logic devices; storage devices; PLA; PAL; Programmability of PLDs; CPLDs; FPGAs; Verlog-Based design flows for FPGAs; Synthesis with FPGAs.	12 Hrs
 Programmable Logic and Storage Devices: Programmable logic devices; storage devices; PLA; PAL; Programmability of PLDs; CPLDs; FPGAs; Verlog-Based design flows for FPGAs; Synthesis with FPGAs. UNIT 5 	12 Hrs CO5
 Programmable Logic and Storage Devices: Programmable logic devices; storage devices; PLA; PAL; Programmability of PLDs; CPLDs; FPGAs; Verlog-Based design flows for FPGAs; Synthesis with FPGAs. UNIT 5 	12 Hrs CO5 9Hrs
 Programmable Logic and Storage Devices: Programmable logic devices; storage devices; PLA; PAL; Programmability of PLDs; CPLDs; FPGAs; Verlog-Based design flows for FPGAs; Synthesis with FPGAs. UNIT 5 Asynchronous Sequential Circuit Design 	12 Hrs CO5 9Hrs
 Programmable Logic and Storage Devices: Programmable logic devices; storage devices; PLA; PAL; Programmability of PLDs; CPLDs; FPGAs; Verlog-Based design flows for FPGAs; Synthesis with FPGAs. UNIT 5 Asynchronous Sequential Circuit Design Analysis of Asynchronous Sequential Circuit (ASC) – Flow Table Reduction – Races in ASC –State Assignment Problem and the Transition Table – Design of ASC – Static and Dynamic Hazards – Essential Hazards – Data Synchronizers – Designing Vending Machine Controller –Mixed Operating Mode Asynchronous Circuits. 	12 Hrs CO5 9Hrs

Text Books:

S. No.	Title	Authors	Edition	Publisher
1	Advanced Digital Design with the Verilog HDL	Michael D.Ciletti.	2nd Edition 2017	Pearson
2	Advanced FPGA Design: Architecture, Implementation, and Optimization	Steve Kilts	2007	Wiley

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS

	Reference Books:			
S. No.	Title	Authors	Edition	Publisher
1	Advanced Digital Logic Design: Using VHDL, State Machines, and Synthesis for FPGAs	Sunggu Lee	2005	Nelson Engineering
2	Digital Logic applications and Design	John M Yarbrough	2001	Thomson Learning

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS

Subject Code EEE103824	Introduction to VLSI Design	L = 2	T = 1	P = 0	Credits = 3
Evaluation Scheme	ESE	СТ	ТА	Total	ESE Duration
	100	20	30	150	3 Hours

Course Objectives	Course Outcomes
The objective of the course to:	On successful completion of the course
 To make student familiar with basic design techniques for IC fabrication. Students will understand the significance of various design rules and its implementation for IC design. To understand the layout design of few combinational and sequential circuits. 	 the student will be able to: CO1: Acquire basic knowledge of IC design. CO2: Explain IC fabrication techniques. CO3: Develop the concept of layou design rules CO4: Design various combinationa and sequential circuits. CO5: Acquire knowledge of subsystem
	design process.
UNIT 1	CO1
Overview of VLSI Design Methodology:	12 Hrs
Brief introduction of SSI, MSI and LSI,VLSI design Basics of MOS transistors :Basic Electrical pre- enhancement transistor, PMOS enhancement tra- threshold voltage equations, MOS devices equations, order effects-Body effect, Channel length modulation NMOS inverter-Steered input to an NMOS me enhancement mode pull ups, Design of CMOS Inver- in CMOS Inverters, Power and Area considerations.	gn flow, VLSI design style, roperties of MOS NMOS unsistor, threshold voltage, Basic DC equations, Second on, Sub-threshold condition, nodules-Depletion mode & ters, Supply Voltage Scaling
UNIT 2 VLSI Fabrication Techniques:	CO1 8 Hrs
An overview of wafer fabrication -wafer Pro Diffusion –Ion implantation- Deposition-Silicon ga processes-n-well, p-well, Twin-tub, Silicon on	cessing-Oxidation-Patterning ate NMOS process, CMOS insulator- CMOS process

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS

enhancement-Interconnect-Circuit elements.	
UNIT 3	CO3 8Hrs
Layout Design Rules:	
Need for design rules-Mead Conway design rule for the silicon gate NMOS process CMOS Nwell/ Pwell design rules-Simple layout examples-sheet resistance-area Capacitance-Wiring Capacitance drive large capacitive loads.	
UNIT 4	CO4 12 Hrs
Logic Design:	
Combinational MOS Logic Circuits- CMOS Logic Circuits : NAND, NOR, Multiplexers CMOS Transmission Gates (Pass Gates) Pseudo nMOS logic	
Dynamic CMOS logic, Clocked CMOS logic and CMOS Domino logic. Sequential	
Latch and Flip-Flop Circuits, CMOS D-Latch and Edge-Triggered Flip-Flop.	
UNIT 5	CO5
Subsystem Design Process:	8Hrs
Design of a 4 bit shifter-General arrangement of a 4 bit arithmetic processor-Design of a ALU subsystem- Implementing ALU functions with an adder-Carry look ahead adders-Multipliers-serial parallel multipliers- Pipelined multiplier array-Modified Booth's Algorithm.	

S.			Edition	
No.	Title	Authors		Publisher
1	Basic VLSI Design	Douglas A .Pucknell & Kamran Eshranghian	3rd edition 1994	Prentice Hall of India, New Delhi
2	Principles of CMOS VLSI Design: A system perspective	Neil H.E.West & Kamran Eshranghian	2nd edition, 1993	Addison-Wesley

Fext Books:	
--------------------	--

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS

B. Tech. Eighth Semester- DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

S.			Edition	
No.	Title	Authors		Publisher
1.	CMOS VLSI Design: A Circuits and Systems Perspective	Weste	4 th edition	ТМН
2.	Introduction to VLSI Circuits and Systems	John P. Uyemura	2006	John Wiley & Sons

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS

Subject Code EEE103825	Energy Auditing and Management	L = 2	T = 1	P = 0	Credits = 3
Evaluation	ESE	СТ	TA	Total	ESE Duration
Scheme	100	20	30	150	3 Hours

Course Objectives	Course Outcomes
The objective of the course to:	On successful completion of the course,
1. Students may decide about energy	the student
management in more effective way.	will be able to:
 Students may analyze about various energy related aspect of electrical system and its auditing methods. Students can carry out financial management 	 CO1: :Understanding basics of demand side management and mechanisms (technical, legal or financial) that influence energy consumption CO2: Learning the basics of energy auditing with application on different sectors. CO3: Identification of energy conservation opportunities in various industrial processes CO4: Understand the different methods used to reduce energy consumption in lighting system. CO5: Perform financial management
UNIT 1	CO1
Basic principles of Energy audit Energy Scenario: Primary and Secondary Energ conventional energy, Energy Security, Energy Cons Concept and methods of energy conservation, Energy Introduction to DSM. Concept of DSM, Benefits from	y, Conventional and non- ervation and its importance, needs of growing economy, DSM, DSM techniques.
UNIT 2 Basic principles of Energy audit Definition, Energy audit- need, Types of energy audit approach-Understanding energy costs, Bench mar Matching energy use to requirement, Maximizing sys	, Energy management (audit) king, Energy performance, stem efficiencies, Optimizing

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS

B. Tech. Eighth Semester- DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

the input energy requirements, Fuel and energy substitution.	
UNIT 3	
Energy efficient Motors	01115
Energy efficient motors, Factors affecting efficiency, Loss distribution, Constructional details, Characteristics, Variable speed, Variable duty cycle systems, RMS Hp, Voltage Variation, Voltage unbalance, Over motoring, Motor energy audit.	
UNIT 4	CO4
Power Factor Improvement, Lighting and energy instruments	8 Hrs
Power factor-Methods of improvement, Location of capacitors, Pf with non linear loads, Effect of harmonics on PF, PF motor controllers, Good lighting system design and practice, Lighting control, Lighting energy audit, Energy Instruments-Watt meter, Data loggers, Thermocouples, Pyrometers, Lux meters.	
UNIT 5	CO5
Economic aspects and analysis	9Hrs
Economics Analysis-Depreciation Methods, Time value of money, Rate of return, Present worth method, Replacement analysis, Life cycle costing analysis, Energy efficient motors- Calculation of simple payback method, Net present worth method, Lighting - Applications of life cycle costing analysis, Return on investment.	

Text Books:

S. No.	Title	Authors	Edition	Publisher
1	Energy technology (Non Conventional, Renewable and Conventional)	S. Rao, Parulekar	3 rd Edition	KhannaPbs.
2	Industrial Energy Management: Principles and Applications	Petrecca	1999	The Kluwer international series -207
3	Energy-Efficient Electric Motors and Their Applications	T.J.E Miller	2003	John Wiley & Sons,

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS

B. Tech. Eighth Semester- DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Reference Books:

of sector

S. No.	Title	Authors	Edition	Publisher
1	Energy Management Handbook 2001	Turner, Wayne C.	2000	The Fairmont Press
2	Plant Engineers and Managers Guide to Energy Conservation	Albert Thumann, P.W	Seventh Edition	TWI Press Inc, Terre Haute.
3.	Renewable Energy Sources and Conservation Technology	N.K. Bansal, Kleeman Millin	1990	Tata McGraw-Hill Publishers

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS

Subject Code EEE100841	Robotics and Automation	L = 3	T = 0	P = 0	Credits = 3
Evaluation	ESE	СТ	ТА	Total	ESE Duration
Scheme	100	20	30	150	3 Hours

Course Objectives	Course Outcome	S
The objective of the course to:	On successful completion	of the
1. To introduce various types of Robots and	course, the student will be abl	le to:
the functional elements of Robotics	CO1: Understand pri	inciples of
2. To impart knowledge of robot drive	Automation , pneuma	atics and
systems	hydraulics systems	
3. To educate on various sensors used in	CO2: Understand types of au	utomation.
Robotic automation	CO3: Understand basic c	oncepts of
	robotics	
	C04: Select appropriate	drive for
	Robotic applications.	f 1
	CUS: To Select proper sensor	S IOF FODO
	as per application requirement	ll
LINIT 1		CO1
Automation:		10 Hrs
Definition, Advantages, goals, types, need, laws and Elements of Automation. Fluid power and its elem power, Pneumatics vs. Hydraulics, benefit and limit hydraulics systems, Role of Robotics in Industrial Automatics	principles of Automation. nents, application of fluid itations of pneumatics and tomation.	
UNIT 2		CO2
		11 Hrs
Type Automation:		
Automated Flow lines, Methods of Workpart Trans Buffer Storage, Control Functions, and Automation Design and Fabrication Considerations.	port, Transfer Mechanism, for Machining Operations,	
UNIT 3		CO3 12Hrs
Fundamentals of Robotics		
Historical development of Robotics, Definitions of	Industrial Robot. Type and	

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS

B. Tech. Eighth Semester- DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Robot Components, Robot Degrees of Freedom, Work volume and work envelope, Robot Joints and symbols, Robot Coordinates, Robot Reference Frames, Resolution, accuracy and precision of Robot, Work cell control	
UNIT 4 Robot Drive Systems	CO4 8 Hrs
Pneumatic Drives, Hydraulic Drives, Mechanical Drives, Electrical Drives-D.C. Servo Motors, Stepper Motors, A.C. Servo Motors, BLDC-Salient Features, Applications and Comparison of all these Drives, Micro actuators, selection of drive, Power transmission systems for robot, Motion conversion, Determination of HP of motor, Types of Gearbox: - Planetary, Harmonic, Cycloidal gearbox and gear Ratio, variable speed arrangements	
UNIT 5	CO15
UNIT 5 Robot Sensors	CO15 7Hrs

Text Books:

S. No.	Title	Authors	Edition	Publisher
1	Automation, Production Systems and Computer Integrated Manufacturing	M.P.Grover	4 th Edition	Pearson Education.
2	Industrial Robotics, Technology, Programming & Applications	Groover, M.P. Weiss, M. Nagel, R.N. & Odrey, N.G., Ashish Dutta	2 nd Edition	Tata McGraw Hill Education Pvt. Ltd.

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS

S. No.	Title	Authors	Edition	Publisher
1	Anatomy of Automation	Amber G.H & P.S. Amber,	1962	Prentice Hall
2	Robotics Technology and Flexible Automation	S. R. Deb	2 nd Edition	Tata McGraw Hill.

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS

न्यम

Subject Code EEE100842	Utilization of Electrical Energy	L = 3	T = 0	P = 0	Credits = 3
Evaluation	ESE	СТ	TA	Total	ESE Duration
Scheme	100	20	30	150	3 Hours

Course Objectives	Course Outcomes	
The objective of the course to:	Students will be able to:	
 This course provides an introduction to the principles of electrical drives and their applications. This course deals with the fundamentals of illumination and its classification. This course provides knowledge on electrical traction systems. 	 CO1 To understand the operating print characteristics of traction mot respect to speed, temperature, condition. CO2 To acquaint with the different heating and welding techniques. CO3 To study the basic princi illumination and its measurement. CO4 To understand the basic print electric traction including speed curves of different traction service CO5 To understand the method of calculation various traction system for acceleration and other related paincluding demand side management 	tiples and ors with loading types of ples of aciple of ed— time s. ulation of braking, urameters,
UNIT 1	mendening demand side managemen	CO1
Electric Drives, Elevators and Its Industr Introduction, Factors affecting selection o Characteristics of Drives, Transient Cl Equalization, Industrial Applications, Operations.	ial Applications f Motor, Types of Load, Steady State naracteristics, Size of Motor, Load Speed Control Systems, Different	10 Hrs
UNIT 2		CO2
Electric Heating, Welding & Electrolytic	Process:	9 Hrs
Advantages and methods of electric heating and dielectric heating. Electric welding, welding equipment, comparison between	g, resistance heating, induction heating, resistance and arc welding, electric A.C. and D.C. Welding. Principle,	

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS

B. Tech. Eighth Semester- DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Faraday's laws of electrolysis, current efficiency, energy efficiency.	
UNIT 3	CO3
Illumination:	10 Hrs
Introduction, terms used in illumination, laws of illumination, polar curves, photometry, integrating sphere, sources of light. Discharge lamps, MV and SV lamps comparison between tungsten filament lamps and fluorescent tubes, Basic principles of light control, Types and design of lighting and flood lighting.	
UNIT 4	CO4
Electric Traction – I:	8 Hrs
System of electric traction and track electrification. Review of existing electric traction systems in India. Special features of traction motor, methods of electric braking – plugging, rheostatic braking and regenerative braking. Mechanics of train movement. Speed-time curves for different services – trapezoidal and quadrilateral speed time curves.	
UNIT 5	CO5
Electric Traction – II :	8Hrs
Calculations of tractive effort, power, specific energy consumption for given run, effect of varying acceleration and braking retardation, adhesive weight and braking retardation adhesive weight and coefficient of adhesion	

Text Books:

S. No.	Title	Author(s)	Edition	Publisher
1	Utilization of Electrical Energy	E. Opens haw Taylor	1 st Edition	University Press
2	Art & Science of Utilization of Electrical Energy	H.Partab	3rd Edition, 1980	Pritam Surat & Sons.

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS

S. No.	Title	Author(s)	Edition	Publisher
1	Utilization of Electrical Power and Electric Traction	J.B.Gupta	10th Edition 2012	S.K.Kataria & Sons
2	Utilization of Electrical Power and Electric Traction	G. C .Garg	2004	Khanna Publishers

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

Shri Shankaracharya Technical Campus, Bhilai

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

B. Tech. Eighth Semester- DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Subject Code EEE103891	High Voltage Engineering Lab	L =0	T = 0	P = 2	Credits = 1
Evaluation Scheme	ESE	СТ	ТА	Total	ESE Duration
	25		25	50	

List of Experiments

List of Experiments

- 1. To calibrate the voltmeter of High voltage control panel with the help of standard sphere gap.
- 2. To determine the corona starting voltage for :
 - a) Rod-plane gap
 - b) Rod-sphere gap
- 3. To study & determine breakdown strength of cable (11KV).
- 4. Study & determination of breakdown voltage of rod & rod gap.
- 5. To test Breakdown voltage and One minute with stand voltage on transformer oil.
- 6. To test power frequency break down strength of solid insulating materials.
 - a) Paper
 - b) Presspan
 - c) Bakelite
- 7. To determine flash over voltage of 11 KV Disc insulation.
- 8. To find the string efficiency of a string of 11KV insulator disc.
- 9. To study impulse generator & obtained standard impulse voltage wave.

List of Equipments Required:

- 1. HV testing Transformer.
- 2. Voltmeter.
- 3. Power frequency high voltage transformer.
- 4. Sphere arrangement.
- 1. 5. Solid Insulator testing Set.
- 5. Impulse Voltage Generator.
- 6. Auto transformer
- 7. Oil testing kit

		July 2022	1.00	Applicable for AY 2022-23	
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards	

Shri Shankaracharya Technical Campus, Bhilai

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

B. Tech. Eighth Semester- DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Subject Code EEE103892	Installation, Maintenance and Testing of Electrical Equipment Lab	L =0	T = 0	P = 2	Credits = 1
Fyaluation	ESE	СТ	ТА	Total	ESE Duration
Scheme	25		25	50	

List of Experiments

List of Experiments (At least ten experiments are to be performed by each student)

1. Calibration of Ammeter and voltmeter.

2. To study and prepare the standard operating procedure required while taking electrical shutdown.

- 3. Calibration of Wattmeter.
- 4. Calibration of Energy meter.
- 5. Testing of wiring installation using megger.
- 6. Testing of Cable using Spark Tester.
- 7. Current Transformer Testing.
- 8. Potential Transformer Testing.

9. To study the Installation of Plate and Pipe earthing.

10. Measurement of Earth Resistance using Earth Tester.

11. To study the installation and routine test required for commissioning of 3phase Induction motor.

12. Study of Installation of Pole Mount Substation and preparation of it's estimate.

13. Installation, Maintenance and Testing of HPMV/ Sodium Vapour/ Metal Halide Lamp.

14. Live Demonstration of Fire Fighting to extinguish Electrical Fire using Dry Powder type Fire

extinguisher. (Mock Demo to entire group/class at a time; No batch size limitation)

15. Live Demonstration of Artificial Respiration Techniques, Preferably by a Doctor with the help of Dummy Model. (Mock Demo to entire group/class at a time; No batch size limitation)

Apparatus Required:

1. CT, PT

- 2. Energy meters
- 3. Ammeter, Voltmeter
- 4. Induction motor
- 5. Megger
- 6. Cable Tester
- 7. Fire extinguisher

- 1. Testing, commissioning, operation and maintenance of Electrical equipments S. Rao, 6th Edn. Khanna Publishers.
- 2. A course in electrical and electronic measurement and instrumentation, Sawhney.

		July 2022	1.00	Applicable for AY 2022-23	
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards	