

# **BHILAI (C.G.)** (An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

| Sl. | Board of Studies                  | Courses                                                  | Course Code          |    | iod p<br>Veek |    | Scheme of<br>Examination<br>Theory/Lab |     | on  | Total<br>Marks | Credit |
|-----|-----------------------------------|----------------------------------------------------------|----------------------|----|---------------|----|----------------------------------------|-----|-----|----------------|--------|
| No. | (BOS)                             |                                                          |                      | L  | Т             | Р  | ESE                                    | CT  | TA  | Marks          |        |
| 1   | Computer Science<br>& Engineering | Compiler Design                                          | CS102601             | 2  | 1             | -  | 100                                    | 20  | 30  | 150            | 3      |
| 2   | Computer Science<br>& Engineering | Software<br>Engineering and<br>Project Management        | CS102602             | 2  | 1             | -  | 100                                    | 20  | 30  | 150            | 3      |
| 3   | Computer Science<br>& Engineering | IoT Development<br>Boards                                | CS115603             | 2  | 1             | -  | 100                                    | 20  | 30  | 150            | 3      |
| 4   | Computer Science<br>& Engineering | Professional<br>Elective-II                              | Refer to<br>Table-II | 2  | 1             | -  | 100                                    | 20  | 30  | 150            | 3      |
| 5   | Computer Science<br>& Engineering | Open Elective-I                                          | Refer to<br>Table-I  | 3  | 0             | -  | 100                                    | 20  | 30  | 150            | 3      |
| 6   | Computer Science<br>& Engineering | Cloud Computing<br>Lab                                   | CS102691             |    | -             | 2  | 25                                     | -   | 25  | 50             | 1      |
| 7   | Computer Science<br>& Engineering | Software<br>Engineering and<br>Project<br>Management Lab | CS102692             |    | -             | 2  | 25                                     | -   | 25  | 50             | 1      |
| 8   | Computer Science<br>& Engineering | IoT Board lab                                            | CS115693             |    | -             | 2  | 25                                     | -   | 25  | 50             | 1      |
| 9   | Computer Science<br>& Engineering | Minor Project-II<br>(React-JS)                           | CS102694             |    | -             | 2  | 50                                     | -   | 25  | 75             | 1      |
| 10  | Computer Science<br>& Engineering | Essence of Indian<br>Knowledge and<br>Tradition          | CS100695             |    | -             | 2  | -                                      | -   | 25  | 25             | 1      |
|     | Tota                              | ıl                                                       |                      | 11 | 4             | 10 | 625                                    | 100 | 275 | 1000           | 20     |

L-Lecture CT- Class Test T- Tutorial TA- Teachers Assessment P-Practical ESE- End Semester Exam

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |



BHILAI (C.G.)

(An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

| S.No. | <b>Board of Studies (BOS)</b>  | Course(Subject)                     | Course<br>Code | Credit |
|-------|--------------------------------|-------------------------------------|----------------|--------|
| 1.    | Computer Science & Engineering | Smart Contract                      | CS116621       | 3      |
| 2.    | Computer Science & Engineering | Cloud Computing                     | CS102622       | 3      |
| 3.    | Computer Science & Engineering | Object Oriented Modeling And Design | CS102623       | 3      |
| 4.    | Computer Science & Engineering | Mobile Computing                    | CS102624       | 3      |
| 5.    | Computer Science & Engineering | Robotics and Automation             | CS102625       | 3      |

# **Table-II: (Professional Elective-II)**

# Table--I: (Open Elective –I)

| a N  |                                                |                                        |                                                         |                    |                                   |                                                            |
|------|------------------------------------------------|----------------------------------------|---------------------------------------------------------|--------------------|-----------------------------------|------------------------------------------------------------|
| S.No | Board of Studies (BOS                          | )                                      | Course (Su                                              | ibject)            | Course Code                       | Link                                                       |
| 1.   | Civil Engineering                              |                                        | Project Construction<br>Planning and Control            |                    | CE100641                          | https://archive.nptel.ac.in/co<br>urses/105/106/105106149/ |
| 2.   | Civil Engineering                              |                                        | Remote Sensing<br>Principle & App                       |                    | CE100642                          | https://nptel.ac.in/courses/1<br>05101206                  |
| 3.   | Computer Science & Engineer                    | ing                                    | Enterprise Reso                                         | urce Planning      | CS100643                          |                                                            |
| 4.   | Computer Science & Engineer                    | ing                                    | Quantum Com                                             | puting             | CS100644                          |                                                            |
| 5.   | Computer Science & Engineer                    | ing                                    | Digital Marketir                                        | ıg                 | CS100645                          |                                                            |
| 6.   | Electrical & Electronics Engin                 | eering                                 | g Hybrid Electric Vehicle                               |                    | EEE100647                         |                                                            |
| 7.   | Electrical & Electronics Engineering           |                                        | Grid Integration of<br>Renewable Energy Sources         |                    | EEE100648                         |                                                            |
| 8.   | Electrical Engineering                         |                                        | Renewable Energy Systems                                |                    | EE100649                          | nptel.ac.in/courses/1031032<br>061                         |
| 9.   | Electrical Engineering                         | Industrial Automation and PLC EE100650 |                                                         | EE100650           | nptel.ac.in/courses/1081050<br>62 |                                                            |
| 10.  | Electronics & Telecommunication<br>Engineering |                                        | Introduction to Wireless and<br>Cellular Communications |                    | ET100651                          | https://nptel.ac.in/courses/10<br>6106167                  |
| 11.  |                                                |                                        | Cryptography &<br>Network Security                      |                    | ET100652                          | https://nptel.ac.in/courses/10<br>6105162                  |
| 12.  | Information Technology                         |                                        | Human Computer Interaction                              |                    | IT100653                          | https://nptel.ac.in/courses/10<br>6106177                  |
|      |                                                |                                        |                                                         | July 2022          | 1.00                              | Applicable for AY                                          |
|      | Chairman (AC)                                  | Chairr                                 | nan (BoS)                                               | Date of<br>Release | Version                           | 2022-23 Onwards                                            |



BHILAI (C.G.)

(An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

| S.No | <b>Board of Studies (BOS)</b>  | Course (Subject)      | Course Code                                             | Link                                                           |
|------|--------------------------------|-----------------------|---------------------------------------------------------|----------------------------------------------------------------|
| 13   | Information Technology         | Virtual Reality       | IT100654                                                | https://nptel.ac.in/uacourses/<br>10610                        |
| 14.  |                                |                       | MG100655                                                | https://nptel.ac.in/courses/1<br>10105146                      |
|      | MBA Management for Technocrats | MG100656              | https://onlinecourses.swaya<br>m2.ac.in/<br>nou22_mg07/ |                                                                |
| 15.  |                                |                       | MG100657                                                | https://onlinecourses.swaya<br>m2.ac.in/<br>nou22_mg06/preview |
|      | MBA                            | Industrial Management | MG100658                                                | https://onlinecourses.nptel.ac<br>.in/noc2<br>2_mg81/preview   |
| 16.  | Mechanical Engineering         | Operation Research    | ME100659                                                | https://nptel.ac.in/courses/11<br>0106062                      |
| 17.  | Mechanical Engineering         | Engineering Economics | ME100660                                                | https://nptel.ac.in/courses/11<br>2107209                      |

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |



BHILAI (C.G.) (An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

| Subject Code<br>CS102601 | Compiler Design | L = 2 | T = 1 | <b>P</b> = 0 | Credits = 3  |
|--------------------------|-----------------|-------|-------|--------------|--------------|
| Examination              | ESE             | СТ    | TA    | Total        | ESE Duration |
| Scheme                   | 100             | 20    | 30    | 150          | 3 Hours      |

| Course Objectives                                                                                                                                                                                                                                                        | Course Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <ul> <li>The objective of this course is</li> <li>To provide the skills needed for building compilers for various situations that one may encounter in a career in Computer Science.</li> <li>To understanding the fundamental principles in compiler design.</li> </ul> | <ul> <li>On successful completion of the course, the student will be able to:</li> <li>CO1. Explain the concepts of Compilers and roles of the lexical analyzer.</li> <li>CO2. Apply the concepts of different Parsing techniques and implement the knowledge to Yacc tool.</li> <li>CO3. Develop syntax directed translation schemes.</li> <li>CO4. Implement the principles of scoping, parameter passing and runtime memory management.</li> <li>CO5. Use the new code optimization techniques to improve the performance of a program in terms of speed and space and develop algorithms to generate code for a target machine.</li> </ul> |  |  |

**UNIT I:** Introduction : Introduction to Compiler, single and multi-pass compilers, Translators, Phases of Compilers, Compiler writing tools, Finite Automata and Lexical Analyzer: Role of Lexical Analyzer, Specification of tokens, Recognition of tokens, Regular expression, Finite automata, from regular expression to finite automata, transition diagrams, Implementation of lexical analyzer with LEX.

**UNIT II:** Syntax Analysis and Parsing Techniques : Context free grammars, Bottom-up parsing and top down parsing, Top down Parsing : elimination of left recursion, recursive descent parsing, Predicative Parsing, Bottom Up Parsing : Operator precedence parsing, LR parsers, Construction of SLR, Canonical LR and LALR parsing tables, Construction of SLR parse tables for Ambiguous grammar, parser generator- YACC, error recovery in top down and bottom up parsing.

**UNIT III**: Syntax Directed Translation & Intermediate Code Generation : Synthesized and inherited attributes, Construction of syntax trees, bottom up and top down evaluation of attributes, S- attributed and L attributed definitions ,Postfix notation; Three address codes, quadruples, triples and indirect triples, Translation of assignment statements, control flow, Boolean expression and Procedure Calls.

UNIT IV: Run-time Environment : Storage organization, activation trees, activation records, allocation

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |



# SHRI SHANKARACHARYA TECHNICAL CAMUS BHILAI (C.G.)

(An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

strategies, Parameter passing symbol table, dynamic storage allocation.

**UNIT V**: Code Optimization and Code Generation : Basic blocks and flow graphs, Optimization of basic blocks, Loop optimization, Global data flow analysis, Loop invariant computations. Issue in the design of Code generator, register allocation, the target machine, and simple Code generator.

#### **Text Books:**

| S. No. | Title                                      | Author(s)                                   | Publisher          |
|--------|--------------------------------------------|---------------------------------------------|--------------------|
| 1      | Compilers Principles, Techniques and Tools | Alfred V. Aho, Ravi Sethi and<br>Ullman J.D | Addison Wesley     |
| 2      | Principle of Compiler Design               | Alfred V. Aho and J.D. Ullman               | Narosa Publication |
| 3      | Introduction to Compiler Techniques        | .P. Bennet                                  | Tata McGraw-Hill   |

| S. No. | Title                                       | Author(s)                         | Publisher               |
|--------|---------------------------------------------|-----------------------------------|-------------------------|
| 1      | Compiler Design in C                        | A.C. Holub                        | PHI                     |
| 2      | Compiler construction (Theory and Practice) | A. Barret William and R.M., Bates | Galgotia<br>Publication |
| 3      | Compiler Design                             | O.G. Kakde                        | Laxmi Publication       |

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |



BHILAI (C.G.) (An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

| Subject Code<br>CS102602 | Software Engineering & Project<br>Management | L = 2 | T = 1 | <b>P</b> = 0 | Credits = 3  |
|--------------------------|----------------------------------------------|-------|-------|--------------|--------------|
| Examination              | ESE                                          | СТ    | ТА    | Total        | ESE Duration |
| Scheme                   | 100                                          | 20    | 30    | 150          | 3 Hours      |

| Course Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Course Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>The objective of this course is to :</li> <li>To introduce software project and to understand about the different software processes &amp; To introduce ethical and professional issues and to explain why they are concern to software engineers</li> <li>Understand good coding practices, including documentation, contracts, regression tests and daily builds.</li> <li>To understand how Software engineering &amp; Project Management is concerned with theories, methods and tools for professional software development.</li> </ul> | <ul> <li>After completion of this course, the students would be able to :</li> <li>CO1. Select and implement different software development process models.</li> <li>CO2. Extracting and analyzing software requirements specifications for different projects</li> <li>CO3. Developing some basic level of software architecture/design</li> <li>CO4. Analyzing software risks and risk management strategies, applying different testing and debugging techniques and analyzing their effectiveness .</li> <li>CO5. Defining the concepts of software quality and reliability on the basis of International quality standards, defining the basic concepts and importance of Software project management concepts like cost estimation, scheduling and reviewing the progress.</li> </ul> |

## **UNIT I: Introduction to Software Engineering**

Evolution and impact of Software engineering, software life cycle models: Waterfall, prototyping, Evolutionary, and Spiral models. Feasibility study, Functional and Non-functional requirements, Requirements gathering, Requirements analysis and specification. [7 Hours]

## **UNIT II : Software Requirement Analysis and Specification**

Types of Requirement, Feasibility Study, Requirement Analysis and Design: DFD, Data Dictionary, HIPO Chart, Warnier Orr Diagram, Requirement Elicitation: Interviews, Questionnaire, Brainstorming, Facilitated Application Specification Technique (FAST), Use Case Approach. SRS Case study, Software Estimation: Size Estimation: Function Point (Numericals). Cost Estimation: COCOMO (Numericals), COCOMO-II (Numericals). Earned Value Management [8 Hours]

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |

[CO1]

# [CO2]

BHILAI (C.G.)

(An Autonomous Institution)

#### SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

# UNIT III : Software Design

Basic issues in software design, modularity, cohesion, coupling and layering, function-oriented software design: DFD and Structure chart, object modeling using UML, Object-oriented software development, user interface design. Coding standards and Code review techniques. [7 Hours]

# **UNIT IV : Testing Strategies**

Fundamentals of testing, White-box, and black-box testing, Test coverage analysis and test case design techniques, mutation testing, Static and dynamic analysis, Software reliability metrics, reliability growth modeling. Software Risk management: Reactive vs Proactive Risk strategies, software risks, Risk identification, [7 Hours] Risk projection.

# **UNIT V : Software project Management**

Project planning and control, cost estimation, project scheduling using PERT and GANTT charts, cost-time relations: Rayleigh-Norden results, quality management, ISO and SEI CMMI, PSP and Six Sigma. Computer aided software engineering, software maintenance, software reuse, Component-based software development. [7 Hours]

## Text Books:

| S. No | Title                                              | Author(s)        | Publisher         |
|-------|----------------------------------------------------|------------------|-------------------|
| 1     | Software Engineering: A practitioner's<br>Approach | Roger S Pressman | McGrawHill        |
| 2     | Software Engineering                               | Ian Sommerville  | Pearson education |

# **Reference Books:**

| S. No. | Title                                          | Author(s)         | Publisher                      |
|--------|------------------------------------------------|-------------------|--------------------------------|
| 1      | Software Engineering: A Precise Approach       | Pankaj Jalote     | Wiley India                    |
| 2      | Software Engineering : A Primer                | Waman S Jawadekar | Tata McGraw-Hill               |
| 3      | Fundamentals of Software Engineering           | Rajib Mall        | PHI                            |
| 4      | Software Engineering, Principles and Practices | Deepak Jain       | Oxford University<br>Press     |
| 5      | Software Engineering: Abstraction and modeling | Diner Bjorner     | Springer International edition |

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |



# [CO3]

# [CO4]

[CO5]





BHILAI (C.G.) (An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

| Subject Code<br>CS1115603 | IoT Development Boards | L = 2 | T = 1 | <b>P</b> = 0 | Credits = 3  |
|---------------------------|------------------------|-------|-------|--------------|--------------|
| Examination               | ESE                    | СТ    | TA    | Total        | ESE Duration |
| Scheme                    | 100                    | 20    | 30    | 150          | 3 Hours      |

| Course Objectives                                                                                                                                                                                                                                                                    | Course Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The objective of this course is to make students know the<br>hands-on experience using different IoT architectures, to<br>provide skills for interfacing sensors and actuators with<br>different IoT architectures, to develop skills on data<br>collection and logging in the cloud | On successful completion of the course, the student will be<br>able to:<br><b>CO1.</b> Basic Concepts of Arduino UNO.<br><b>CO2.</b> To understand Arduino Uno connections with sensors .<br><b>CO3.</b> To apply commonly used IOT protocols such as REST<br>API, MQTT through IOT based demonstration.<br><b>CO4.</b> To understand Raspberry PI along with critical<br>protocols and its communication to csloud.<br><b>CO5.</b> To solve analog sensor and digital sensor Interfacing<br>with IOT devices. |

## **UNIT – I : IoT- Introduction and its components**

IoT building blocks, Sensors and Actuators, IoT Devices, IoT boards (Arduino Uno, ESP 8266-12E Node MCU, and Raspberry Pi 3). [6 Hrs]

# UNIT – II: Arduino Uno

# Getting started with the Uno boards, blink program, connection of sensors to the Uno board, reading values of sensors from the Uno board, interrupts. Case study: Temperature/Humidity Control; Case Study: Sending values Temperature/Humidity values to the Internet via GSM module [6Hrs]

# UNIT - III: ESP 8266-12E Node MCU

Getting started with the ESP board, Micropython and Explorer IDE, Flushing the ESP8266 board with micropython, connecting sensors to the ESP board, Connecting ESP board to WiFi, Interfacing ESP with the Cloud (REST API-GET, POST, MQTT), interrupts, comparison of ESP 32 board with the ESP 8266 board. Case Study: Switching light on /off remotely. Case Study: Voice-based Home Automation for switching lights on/off (Android phone – Google Assistant (Assistant <-> IFTTT), MQTT (ESP <-> IFTTT), ESP 8266 <-> Lights). [10 Hrs]

# UNIT – IV: Raspberry Pi 3

Rpi3 introduction and installing the Raspbian Stretch OS, Headless - Computer and Rpi3 configuration to connect

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |

# [CO1,CO2]

[CO1]

#### **UIII**5]

# [CO2,CO3]

## [CO4]



# BHILAI (C.G.) (An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

through SSH via Ethernet, Headless - connecting Rpi3 remotely without Ethernet cable via SSH, IP address, Rpi 3 - Testing the GPIO pins through Scripts [10 Hrs]

## UNIT - V Raspberry pi3 interfacing with Sensor

[CO5]

DHT11, Raspberry pi3 python library install and reading sensor feed, 'Plug and play ' type cloud platform overview for integration to IOT devices, 'Plug and play' cloud platform for integration to IOT device - actuator (LED), Plug and play platform - Custom widget (DHT11-Sensor) integration through Python. New - Raspeberry Pi 4 Vs Raspberry Pi3 Mobel B Comparison, LoRawan /LPWAN – Overview [6 Hrs]

#### **Text Books:**

| S. No. | Title                                                                                                                                 | Author(s)    | Publisher            |
|--------|---------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------|
| 1      | Internet of Things with Raspberry Pi 3: Leverage<br>the power of Raspberry Pi 3 and JavaScript to build<br>exciting IoT projects 2018 | Rao, M.      | Packt Publishing Ltd |
| 2      | Arduino for beginners: essential skills every maker needs 2013                                                                        | Baichtal, J. | Pearson Education.   |

| S. No. | Title                                    | Author(s)                     | Publisher                        |
|--------|------------------------------------------|-------------------------------|----------------------------------|
| 1      | Internet of Things with ESP8266 (2016)   | Schwartz, M.                  | Packt Publishing<br>Ltd          |
| 2      | Getting started with raspberry PI (2012) | Richardson, M., & Wallace, S. | O'Reilly Publisher<br>Media, Inc |

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |



BHILAI (C.G.) (An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

| Subject Code<br>CS102691 | Cloud Computing Lab | L = 0 | <b>T</b> = 0 | <b>P</b> = 2 | Credits =1   |
|--------------------------|---------------------|-------|--------------|--------------|--------------|
| Examination              | ESE                 | СТ    | TA           | Total        | ESE Duration |
| Scheme                   | 25                  | -     | 25           | 50           | 3 hours      |

| Course Objectives                                                                                                                                                                                                                             | Course Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| <ul> <li>To develop web applications in cloud</li> <li>To learn the design and development process<br/>involved in creating a cloud based application</li> <li>To learn to implement and use parallel<br/>programming using Hadoop</li> </ul> | <ul> <li>On successful completion of the course, the student will be able to:</li> <li>CO1. Configure various virtualization tools such as Virtual Box, VMware workstation.</li> <li>CO2. Design and deploy a web application in a PaaS environment.</li> <li>CO3. Learn how to simulate a cloud environment to implement new schedulers.</li> <li>CO4. Install and use a generic cloud environment that can be used as a private cloud.</li> <li>CO5. Manipulate large data sets in a parallel environment</li> </ul> |  |  |  |
| List of Experiments                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |

[12 Hrs]

1. Install Virtualbox/VMware Workstation with different flavours of linux or windows OS on top of windows7 or 8.

2. Install a C compiler in the virtual machine created using virtual box and execute Simple Programs

3. Install Google App Engine. Create hello world app and other simple web applications using python/java.

4. Use GAE launcher to launch the web applications.

5. Simulate a cloud scenario using CloudSim and run a scheduling algorithm that is not present in CloudSim.

6. Find a procedure to transfer the files from one virtual machine to another virtual machine.

- 7. Find a procedure to launch virtual machine using trystack (Online Openstack Demo Version)
- 8. Install Hadoop single node cluster and run simple applications like word count.
- 9. Create an application (Ex: Word Count) using HadoopMap/Reduce.
- 10. Case Study: PAAS(Facebook, Google App Engine)
- 11. Case Study: Amazon Web Services.

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |



BHILAI (C.G.)

(An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

# **Text Books:**

| S. No. | Title                                    | Author(s)     | Publisher |
|--------|------------------------------------------|---------------|-----------|
| 1.     | Cloud Computing- A Practical<br>Approach | Velte         | TMH Pub   |
| 2.     | Cloud Computing                          | Kumar Saurabh | Wiley Pub |
| 3.     | Hadoop: The Definitive Guide             | Tom White     | O'Reilly  |

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |





BHILAI (C.G.) (An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

| Subject Code<br>CS102692 | Software Engineering and<br>Project Management Lab | L = 0 | <b>T</b> = <b>0</b> | <b>P</b> = 2 | Credits =1   |
|--------------------------|----------------------------------------------------|-------|---------------------|--------------|--------------|
| Examination              | ESE                                                | СТ    | TA                  | Total        | ESE Duration |
| Scheme                   | 25                                                 | -     | 25                  | 50           | 3 hours      |

| Course Objectives                                                                                                                                              | Course Outcomes                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                | On successful completion of the course, the student will be able to:                                                                                                                  |
|                                                                                                                                                                | <b>CO1</b> . Define various software application domains and remember different process model used in software development.                                                           |
| The goal of this course is to teach and provide<br>experience building software projects in service to<br>real-time end-user beneficiaries. The laboratory is  | <b>CO2</b> . Explain needs for software specifications also they can classify different types of software requirements and their gathering techniques.                                |
| bursued in the following sequence of stages with<br>lue coordination with co-projectees in teams (of 3–4<br>students) and supervision of laboratory instructor | <b>CO3</b> . Convert the requirements model into the design model and demonstrate use of software and user-interface design principles.                                               |
| upon which the project is graded accordingly.                                                                                                                  | <b>CO4</b> . Justify the role of SDLC in Software Project Development and evaluate importance of Software Engineering.                                                                |
|                                                                                                                                                                | <b>CO5</b> . Generate project schedules, deliverables and construct, design and develop network diagram for different type of projects; also practicing the activities of each phase. |
| List of E                                                                                                                                                      | xperiments                                                                                                                                                                            |
|                                                                                                                                                                | [12 Hrs]                                                                                                                                                                              |

## Instructions to be Strictly Followed by Students

- 1) A group of two to three students should develop software that could be developed during session.
- 2) Technology/Tool like (C/C++/VB/Gambas/PhP/Core Java/Servlet/ JSP .... Any other relevant tool) can be selected for Developing their project

#### 3) Phase wise documentation

- Writing the complete problem statement.
- Writing the Software Requirement Specification document.
- Drawing the entity relationship diagram.

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |



# BHILAI (C.G.) (An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

- Drawing the data flow diagrams at level 0 and level 1. of the project should be submitted (soft and hard copy).
- 4) All group members must have a copy of the documentation, which are to be checked by faculty Lab Incharge, phase wise.
- 5) Before the Final Practical examinations, every individual student should submit his own hardcopy of the documentation in a Punched Cardboard File Only, with a CD containing the softcopy of the same.
- 6) During Final Submissions, every copy of the documentation should be accompanied by a Submission Certificate duly signed by the Teacher In-charge and Head of Department

# LIST OF EXPERIMENTS

**Expt: 1 - Aim**: Phases in software development project, overview, need, coverage of topics **Procedure**:

- 1) Open an appropriate software engineering guide and study the software development life cycle and related topics.
- 2) Study the need of the software engineering.
- 3) Study the coverage of topics such as life cycle models and their comparison

**Expt: 2 - Aim**: To assign the requirement engineering tasks.

#### **Procedure:**

- 1) Identify the different requirement engineering tasks.
- 2) Assign these tasks to various students to set the ball rolling.
- 3) Ask the students to start working on the given tasks.

**Expt: 3- Aim**: To perform the system analysis: Requirement analysis, SRS (Allotted Project) **Procedure:** 

- 1) Assign the group of the students different tasks of system analysis.
- 2) Ask students to meet different users and start analysis the requirements.
- 3) Ask students to give presentations group-wise of their system requirements analysis.

**Expt: 4- Aim**: To perform the function oriented diagram: DFD(level 0, level 1) **Procedure:** 

- 1) Identify various processes, data store, input, output etc. of the system and ask students to analyze
- 2) Use processes at various levels to draw the DFDs.
- 3) Identify various modules, input, output etc. of the system and ask students to analyze.

Expt: 5- Aim: To perform the function oriented diagram: Structured chart

#### **Procedure:**

- 1) Identify various processes, data store, input, output etc. of the system and ask students to analyse
- 2) Identify various modules, input, output etc. of the system and ask students to analyse.
- 3) Use various modules to draw Structured charts.

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |



# BHILAI (C.G.) (An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

**Expt: 6- Aim**: To perform the user's view analysis: Use case diagram **Procedure:** 

- 1) Identify various processes, use-cases, actors etc. of the system and ask students to analyse.
- 2) Use processes at various levels to draw the use-case diagram

**Expt: 7- Aim**: To draw the structural view diagram : Class diagram **Procedure:** 

- 1) Identify various elements such as classes, member variables, member functions etc. of the class diagram
- 2) Draw the class diagram as per the norms.

**Expt: 8- Aim**: To draw the structural view diagram : Object diagram **Procedure**:

- 1) Identify various elements such as various objects of the object diagram
- 2) Draw the object diagram as per the norms.

**Expt: 9-** Aim: To draw the behavioral view diagram : Sequence diagram **Procedure:** 

- 1) Identify various elements such as controller class, objects, boundaries, messages etc.of the sequence diagram
- 2) Draw the sequence diagram as per the norms.

**Expt: 10- Aim**: To draw the behavioral view diagram : Collaboration diagram **Procedure:** 

- 1) Identify various elements such as for the sequence diagram of the collaboration diagram
- 2) Draw the collaboration diagram as per the norms

**Expt: 11- Aim**: To draw the behavioral view diagram : State-chart diagram.

**Procedure:** 

- 1) Identify various elements states and their different transition of the state-chart diagram
- 2) Draw the state-chart diagram as per the norms.

Expt: 12- Aim: To draw the behavioral view diagram : Activity diagram

## **Procedure:**

- 1) Identify various elements such as different activity their boundaries etc. of the activity diagram
- 2) Draw the activity diagram as per the norms.

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |



BHILAI (C.G.)

(An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

# **Text Books:**

| S. No. | Title                                                             | Author(s)     | Publisher              |
|--------|-------------------------------------------------------------------|---------------|------------------------|
| 1.     | Fundamentals of Software engineering                              | Rajib Mall    | PHI Learning Pvt. Ltd. |
| 2.     | Software design – From programming to architecture                | Eric Braude   | John Wiley & Sons Inc. |
| 3.     | Object-oriented software engineering – A use case driven approach | Ivar Jacobson | Pearson India          |

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |



**BHILAI (C.G.)** (An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

| Subject Code<br>CS115693 | IoT Board Lab | L = 0 | <b>T</b> = <b>0</b> | <b>P</b> = 2 | Credits =1   |
|--------------------------|---------------|-------|---------------------|--------------|--------------|
| Examination              | ESE           | СТ    | TA                  | Total        | ESE Duration |
| Scheme                   | 25            | -     | 25                  | 50           | 3 hours      |

| Course Objectives                                                 | Course Outcomes                                        |
|-------------------------------------------------------------------|--------------------------------------------------------|
|                                                                   | On successful completion of the course, the student    |
|                                                                   | will be able to:                                       |
|                                                                   | CO1 Basic Concepts of Arduino UNO.                     |
| The objective of this course is to give students                  | CO2 To understand Arduino Uno, NODE MCU 8266           |
| hands-on experience using different IoT                           | and Raspberry PI along with critical protocols and its |
| architectures, to provide skills for interfacing                  | communication to cloud.                                |
| sensors and actuators with different IoT                          | <b>CO3</b> Students will be capable to design IoT      |
| architectures and to develop skills on data collection            | applications in different domain and be able to        |
| and logging in the cloud                                          | analyze their performance.                             |
|                                                                   | CO4 To solve analog sensor and digital sensor          |
|                                                                   | Interfacing with IOT devices.                          |
|                                                                   | CO5 Build IOT applications using Arduino UNO           |
|                                                                   | Raspberry PI.                                          |
|                                                                   |                                                        |
| List of E                                                         | xperiments                                             |
|                                                                   | [12 Hrs]                                               |
| 1. Measure the Distance Using Ultrasonic Sensor an                | d Make Led Blink Using Arduino                         |
| 2. Detect the Vibration of an Object Using Arduino                |                                                        |
| 3. Sense the Available Networks Using Arduino.                    |                                                        |
| 4. LDR to Vary the Light Intensity of LED Using A                 | rduino.                                                |
| 5. Interact with DHT11 sensor with NodeMCU and reading on screen. | compose a program to print temperature and humidity    |
| 6. Compose a program on NodeMCU to transfer ten                   | nrature and stickness information to thingspeak cloud  |
| 7. Communicate OLED with NodeMCU and comport reading on it.       | se a program to print temperature and misture          |
| 8. Switch Light On and Off Based on the Input of U                | ser Using Raspberry Pi                                 |
| 9. MySQL Database Installation in Raspberry Pi                    |                                                        |
| 10. SQL Queries by Fetching Data from Database in                 | Dognhowy Di                                            |

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |



# BHILAI (C.G.) (An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

- 11. Study of AT89S52 Ultra Development Kit with Development Tool /Environment of Kiel Software for Microcontroller programming.
- 12. To familiarize with Intel Galileo Gen2 board and understand the procedure of creation and compilation of C source code.
- 13. Wifi module interfacing with Intel Galileo Gen2 Board.

## **Text Books:**

| S. No. | Title                                                                                                                                 | Author(s)    | Publisher            |
|--------|---------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------|
| 1      | Internet of Things with Raspberry Pi 3: Leverage<br>the power of Raspberry Pi 3 and JavaScript to<br>build exciting IoT projects 2018 | Rao, M.      | Packt Publishing Ltd |
| 2      | Arduino for beginners: essential skills every maker needs 2013                                                                        | Baichtal, J. | Pearson Education.   |

| S. No | Title                                    | Author(s)                        | Publisher                        |
|-------|------------------------------------------|----------------------------------|----------------------------------|
| 1     | Internet of Things with ESP8266 (2016)   | Schwartz, M.                     | Packt Publishing Ltd             |
| 2     | Getting started with raspberry PI (2012) | Richardson, M., &<br>Wallace, S. | O'Reilly Publisher<br>Media, Inc |

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |





**BHILAI (C.G.)** (An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

| Subject Code<br>CS102694 | Minor Project-II | $\mathbf{L} = 0$ | $\mathbf{T} = 0$ | P =2 | Credits = 1  |
|--------------------------|------------------|------------------|------------------|------|--------------|
| Evaluation               | ESE              | СТ               | ТА               | -    | ESE Duration |
| Scheme                   | 50               | -                | 25               | -    | 3 Hours      |

| student 's ability to analyze, design and solve<br>complex engineering problems through<br>pedagogies ( <b>Project Based Learning</b> ) that CO                               | <ul> <li>On successful completion of the course, the studentwill be able to:</li> <li>O1: Identify, discuss and justify the technical aspects of the chosen project with a comprehensive and systematic approach.</li> <li>O2: Reproduce, improve and refine technical</li> </ul>                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| the content, work through it with others, relate to<br>it through an analysis, use modern tools and<br>effectively solve problems with the<br>corresponding knowledge gained. | <ul> <li>b2: Reproduce, improve and refine technical aspects of engineering projects applying appropriate techniques, resources, and modern engineering and IT tools.</li> <li>b3: Work as an individual and as a member or leader in teams in development of technical projects.</li> <li>b4: Follow management principle and value health, safety and ethical practices during project.</li> <li>b5: Communicate and report effectively project related activities and findings.</li> </ul> |

(i) Students form their team (max four students) and submit their areas in which they would like to pursue their projects.

(ii) Through meeting and deliberations students are allotted guide depending on their preference and maximum number of groups under a faculty is limited to three.

# (b) Identification of projects:

Students are asked to formulate problem statement and state objectives of their project inconsultation with the project guide

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |



BHILAI (C.G.) (An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

# c) Continuous Monitoring

(i) Progress is continuously monitored by guide and instructions are given how to proceed further during their project periods as per time table.

(ii) Students submit weekly progress report to the project in-charge after consultation with their project guide.

# (d) Evaluation

(i) In order to evaluate projects two project seminars (assessment) are taken in which student 's team present their project through presentations and demonstrate their work.

(ii) Students are assessed on the basis of their technical skill implementation, use of modern tools, communication skill, team work, health, safety and ethical practices and relevance of the project.

(iii) At the end of the semesters a report is submitted by the students and student 's projects are finally evaluated by external examiner in end semester practical examination based

| S. No. | Title                              | Authors                                                     | Publisher                                  |
|--------|------------------------------------|-------------------------------------------------------------|--------------------------------------------|
| 1      | Basics Of Project Management       | IES Master Team                                             | IES Master Publication (1<br>January 2021) |
| 2      | Modern Systems Analysis and Design | Jeffrey A. Hoffer,<br>Joey F. George,<br>Joseph S. Valakati | Pearson Education; Third Edition; 2002.    |

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |



# **BHILAI (C.G.)** (An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

| Professional E | lective-II |
|----------------|------------|
|----------------|------------|

| Subject Code<br>CS102621 | Smart Contract | L = 2 | T = 1 | $\mathbf{P} = 0$ | Credits = 3  |
|--------------------------|----------------|-------|-------|------------------|--------------|
| Examination              | ESE            | СТ    | ТА    | Total            | ESE Duration |
| Scheme                   | 100            | 20    | 30    | 150              | 3 Hours      |

| Course Objectives                                  | Course Outcomes                                                                                                                                         |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                    | After the completion of this course, the students will                                                                                                  |
|                                                    | be able to:                                                                                                                                             |
|                                                    | CO1. Understand the basics and objectives of                                                                                                            |
| 1. To understand the Smart Contracts in            |                                                                                                                                                         |
| Blockchain.                                        | CO2. Evaluate the various functionalities and                                                                                                           |
| 2. To learn the tools and programming skills       | features in an Ethereum to generate Smart                                                                                                               |
| required to generate Smart Contracts.              | Contracts.                                                                                                                                              |
| 3. To assess the efficiency of the security        | <b>CO3</b> . Introduce the Solidity language in creation of                                                                                             |
| issues.                                            | a Smart Contracts.                                                                                                                                      |
|                                                    | <b>CO4</b> . Incorporate Smart Contracts in decentralized                                                                                               |
|                                                    | applications.                                                                                                                                           |
|                                                    | <b>CO5</b> . Assess the security issues and effectiveness                                                                                               |
| Unit 1-Eurodomontals of Smart Contracts Blockshain | of a Smart Contracts in real world scenarios. <b>Terminologies</b> –Crypto currency and Smart Contracts -                                               |
|                                                    | chain - Terminology, concepts and practices in Smart                                                                                                    |
| -                                                  | of Ethereum - Prevalence of the Ethereum blockchain in                                                                                                  |
|                                                    | Machine (EVM) - Instances of working Ethereum Smart                                                                                                     |
| Contracts.                                         | [8 Hrs.]                                                                                                                                                |
| Contracts.                                         | [0 1115.]                                                                                                                                               |
| Unit 2 Various Aspects in Application of Smart Cor | ntracts - Market impact and scientific innovation – Trust -                                                                                             |
|                                                    | features in Smart Contracts applications - Workflow of                                                                                                  |
| developing a Smart Contracts - Execution environm  | ~ ~                                                                                                                                                     |
|                                                    |                                                                                                                                                         |
|                                                    | v Source File - Structure of a contracts - Control structuresvith Contracts Creating contracts - Object-oriented highents - Abstract Contracts.[7 Hrs.] |

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |



# BHILAI (C.G.) (An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

Unit 4: Decentralized Applications Decentralized Application Architecture - Connecting to the Blockchain and Smart Contracts –Building Apps – Deployment. [7 Hrs.]

Unit 5: Security Issues Shifting from Trust-in-People to Trust-in-Code - Data permanence - Selective-Obscurity -Security counter measures. Contemporary Issues [7 Hrs.]

#### **Text Books:**

| S. No. | Title                                            | Author(s)                                             | Publisher          |
|--------|--------------------------------------------------|-------------------------------------------------------|--------------------|
| 1      | Ethereum Smart Contracts Development in Solidity | Gavin Zheng, Longxiang Gao,<br>Liqun Huang, Jian Guan | Springer Singapore |
| 2      | Introducing Ethereum and solidity                | Dannen, C.                                            | Berkeley: Springer |

| S. No. | Title                                                                                                          | Author(s)    | Publisher                |
|--------|----------------------------------------------------------------------------------------------------------------|--------------|--------------------------|
| 1      | Solidity Programming Essentials: A<br>beginner's guide to build smart contracts<br>for Ethereum and Blockchain | Modi, Ritesh | Packet Publishing<br>Ltd |

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |



BHILAI (C.G.) (An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

| Subject Code<br>CS102622 | Cloud Computing | L = 2 | T = 1 | $\mathbf{P} = 0$ | Credits = 3  |
|--------------------------|-----------------|-------|-------|------------------|--------------|
| -                        | ESE             | СТ    | ТА    | Total            | ESE Duration |
| Examination<br>Scheme    | 100             | 20    | 30    | 150              | 3 Hours      |

| Course Objectives                                                                                                                                                                                                                                                                          | Course Outcomes                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The Objective is:                                                                                                                                                                                                                                                                          | After the completion of this course, the students willbe able to:                                                                                                                                                                                                                                                                                                           |
| <ul> <li>To provide students with the fundamentals and essentials of Cloud Computing.</li> <li>To provide students a sound foundation of the Cloud Computing so that they are able to start using and adopting Cloud Computing services and tools in their real life scenarios.</li> </ul> | <ul> <li>CO1. State Cloud fundamentals &amp; its application.</li> <li>CO2. Describe the architecture of cloud &amp; various solutions.</li> <li>CO3. Paraphrase virtualization technologies &amp; describe cloud management.</li> <li>CO4. Explain cloud security fundamentals.</li> <li>CO5. Apply various cloud platforms like Google App Engine, Hadoop etc.</li> </ul> |

# **UNIT I: Introduction**

Historical development, Vision of Cloud Computing, Characteristics of cloud computing as per NIST, Cloud computing reference model ,Cloud computing environments, Cloud services requirements, its advantages and limitations, Cloud and dynamic infrastructure, Cloud Adoption and rudiments. [7 Hrs.]

# **Unit-II: Cloud Computing Architecture**

Cloud Reference Model, Concept of IaaS, PaaS, SaaS, AaaS, BaaS, FaaS, DaaS, STaaS, CaaS, NaaS, DBaaS, AaaS, aPaaS, iPaaS, apimPaaS, IoT PaaS, mPaaS, dbPaaS, and UIPaaS, Types of Clouds, Cloud Interoperability & Standards, Scalability and Fault Tolerance, Virtual Desktop Infrastructure. Fog computing, Mist(Edge) computing [7 Hrs.]

# Unit –III: Cloud Management & Virtualization Technology

Resiliency, Provisioning, Asset management, Conceps of Map reduce, Cloud Governance, High Availability and Disaster Recovery. Virtualization: Fundamental concepts of compute ,storage, networking, desktop and application virtualization .Virtualization benefits, server virtualization, Block and file level storage virtualization Hypervisor management software, Infrastructure Requirements, Virtual LAN(VLAN) and Virtual SAN(VSAN) and their benefits . [8 Hrs.]

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |

[CO2]

[CO1]

## [CO3]

BHILAI (C.G.)

(An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

# **Unit-IV: Cloud Solutions**

Cloud Ecosystem, Cloud Business Process Management, Cloud Service Management. Cloud Offerings: Cloud Analytics, Testing Under Control, **Cloud Security:** Cloud Information security fundamentals, Cloud security services, Design principles, Secure Cloud Software Requirements, Policy Implementation, Cloud Computing Security Challenges, Virtualization security Management, Cloud Computing Secutity Architecture . **[7 Hrs.]** 

# Unit-V: Market Based Management of Clouds

Federated Clouds/Inter Cloud: Characterization & Definition, Cloud Federation Stack, Third Party Cloud Services. Overview of cloud applications: ECG Analysis in the cloud, Protein structure prediction, Gene Expression Data Analysis, Satellite Image Processing, CRM and ERP, Social networking.

Case study : Google App Engine, Microsoft Azure , Hadoop , Amazon , Aneka[7 Hrs.]

# **Text Books:**

| S. No. | Title                     | Author(s)     | Publisher |
|--------|---------------------------|---------------|-----------|
| 1      | Mastering Cloud Computing | Buyya, Selvi  | TMH Pub   |
| 2      | Cloud Computing           | Kumar Saurabh | Wiley Pub |

# **Reference Books:**

| S. No. | Title                                    | Author(s)    | Publisher |
|--------|------------------------------------------|--------------|-----------|
| 1      | Cloud Security                           | Krutz, Vines | Wiley Pub |
| 2      | Cloud Computing- A Practical<br>Approach | Velte        | TMH Pub   |
| 3      | Cloud Computing                          | Sosinsky     | Wiley Pub |

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |



# [CO4]

[CO5]



BHILAI (C.G.) (An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

| Subject Code<br>CS102623 | Object Oriented Modeling And<br>Design | L = 2 | T = 1 | <b>P</b> = 0 | Credits = 3  |
|--------------------------|----------------------------------------|-------|-------|--------------|--------------|
| Examination              | ESE                                    | СТ    | ТА    | Total        | ESE Duration |
| Scheme                   | 100                                    | 20    | 30    | 150          | 3 Hours      |

| Course Objectives                                                                                                                                                                                                                        | Course Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Understand the basic steps of Object Oriented<br/>Analysis and Design.</li> <li>Gain practical knowledge in the UML diagrams<br/>and notations.</li> <li>Build an object-oriented model for a project<br/>using UML.</li> </ul> | <ul> <li>Upon completion of this course student will be able to-CO1. Understand basic object-oriented concepts for designing a solution.</li> <li>CO2. Apply an iterative, use case-driven process to the development of a robust design model.</li> <li>CO3. Use the UML to represent the design model.</li> <li>CO4. Apply the OO concepts abstraction, encapsulation, inheritance, hierarchy, modularity, and polymorphism to the development of a robust design model.</li> <li>CO5. Design a software system using object-oriented software engineering paradigm.</li> </ul> |
|                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

## UNIT I: Introduction and Modeling Concepts

**Introduction**- What is Object-Orientation? What is Object-Oriented Development?, Object-Oriented themes, Evidence for usefulness of Object-Oriented Development, OO Modeling history.

Modeling Concepts: Modeling as design technique-Modeling, Abstraction, The three Models. Class Modeling- Object and Class, Links and Associations Concepts. Generalization and Inheritance, A Sample Class Model, Navigation of Class Models. AdvancedClass Modeling –Advanced Objects and Class Concepts, Association ends, N-array associations, Aggregation, Abstract Classes, Multiple Inheritance, Metadata, Reification, Constrains, Derived Data, and Packages. [7 Hrs.]

# UNIT II: State Modeling and Interaction Modeling

**State Modeling**- Events and States, Transition & Conditions, State diagrams, State diagram behavior, Nested State diagrams, Concurrency. Advanced State Modeling- Nested State diagram, Nested States, Signal Generalization, Concurrency, A Sample State Model, Relation of Class and State Models. Interaction Model-Use Case Models, Sequence Models, Activity Models. Advanced Interaction Modeling- Use Case relationships, Procedural Sequence Models, Special Constructs for activity Models. **[7 Hrs.]** 

# UNIT III: Analysis and Design

Process Overview- Development Stages, Development Life cycle. System Conception- Developing a System concept, Elaborating a Concept, Preparing a Problem statement. Domain Analysis- Overview of Analysis,

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |



# BHILAI (C.G.) (An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

Domain Class Model, Domain State Model, Domain Interaction Model, Iterating and Analysis. Application Analysis- Application Interaction Model, Application Class Model, Application State Model, Adding Operations. [7 Hrs.]

# UNIT IV: System design and class Design

**System design:** Overview of System Design, Estimating Performance, Making a Reuse Plan, Breaking a System into Subsystems, Identifying Concurrency, Allocating Subsystems, Management of Data Storage, Handling Global Resources, Choosing Software Control Implementation, Handling Boundary Conditions, Setting Trade-off Priorities, Common Architectural Styles, Architecture of the ATM System.

Class design: Overview of Object Design, Bridging the gap, Realizing Use Cases, Designing Algorithms, Recursing Downward, Refactoring, Design Optimization, Reification of Behavior, Adjustment of Inheritance, Organizing a Class Design, ATM Example [8 Hrs.]

# UNIT V: Implementation

Implementation Modeling- Overview of Implementation, fine-tuning classes, Fine tuning generalizations, realizing Associations, Testing. OO Languages- Introduction, Abbreviated ATM Model, Implementing Structure, Implementing Functionality. Databases- Introduction, Abbreviated ATM Model, Implementing Structure-basic and advanced, Implementing Structure for the ATM Example, Implementing functionality, OO Databases. Programming Style-OO Style, Reusability, Extensibility, Robustness, Programming in-the-large. [7 Hrs.]

#### **Text Books:**

| ſ | S. No. | Title                                             | Author(s)                               | Publisher                       |
|---|--------|---------------------------------------------------|-----------------------------------------|---------------------------------|
|   | 1.     | Object – Oriented Modeling and<br>Design with UML | Michael R Blaha and James R<br>Rumbaugh | Pearson Education,<br>India     |
|   | 2.     | Object oriented systems development               | Ali Bahrami,                            | McGraw-Hill Higher<br>Education |

| S. No. | Title                                                 | Author(s)                                                                                                | Publisher                      |
|--------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------|
| 1.     | Object Oriented Analysis & Design                     | Atul Kahate                                                                                              | Tata McGraw-Hill<br>Education  |
| 2.     | Object-Oriented Analysis and Design with Applications | Grady Booch, Robert A. Maksimchuk<br>Michael W. Engle, Bobbi J. Young, Jim<br>Conallen, Kelli A. Houston | Addison-Wesley<br>Professional |

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |



BHILAI (C.G.) (An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

| Subject Code<br>CS102624 | Mobile Computing | L = 2 | T =1 | <b>P</b> = 0 | Credits = 3  |
|--------------------------|------------------|-------|------|--------------|--------------|
| Examination              | ESE              | СТ    | ТА   | Total        | ESE Duration |
| Scheme                   | 100              | 20    | 30   | 150          | 3 Hours      |

| Course Objectives                                                                                                                                                                                                                                                                                                                                                                                                        | Course Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <ul> <li>To introduce the fundamental design principles &amp; issues in cellular &amp; mobile communications.</li> <li>To enable the student to understand the basic features of cellular-mobile communication systems anddigital radio system.</li> <li>To motivate students to understand the different technology for working of mobile devices, their advantages and disadvantages and emerging problems.</li> </ul> | After successful completion of the course students will<br>be able to:<br><b>CO1</b> . Understand the basic physical-layer architecture<br>of a mobile communication system.<br><b>CO2</b> . Understand various multiple-access techniques<br>for mobile communications, and their advantages and<br>disadvantages.<br><b>CO3</b> . Understand the concepts of wireless<br>communication techniques<br><b>CO4</b> . Understand the concepts of ADHOC networks.<br><b>CO5</b> . Students will be able to acknowledge about the<br>working and development of mobile and wireless<br>devices in detail, services provided by them and recent<br>application development trends in this field. |  |  |

## Unit- I Introduction, Cell Coverage & Frequency Management

Mobile and wireless devices, Frequencies forradio transmission, A basic cellular system, Cell Size. Elements of cellular radio systems, Design and Interference, Concept of frequency reuse, cell splitting, Channels, Multiplexing, Access Techniques, Medium Access control, Spread spectrum, Specialized MAC, Cell Throughput,, Co-channel interference reduction factor, Frequency management, fixed channel assignment, non-fixed channel assignment, traffic & channel assignment, Why hand off, types of handoff and their characteristics, dropped call rates & their evaluation. **[7 Hrs.]** 

## Unit- II GSM Architecture & Services

GSM Services and Features, GSM System Architecture, GSM Radio Subsystem, GSM Channel Types, Example of a GSM Call, Signal Processing in OSM, Channel Coding for Data Channels, Channel Coding for Control Channels, Frequency and Channel Specifications. **New Data Services:** DECT Functional Concept, DECT Radio Link, Personal Access Communication Systems, PACS System Architecture, PACS Radio Interface, UMTS [7 Hrs.]

## **UNIT-III: Wireless Networks**

Wireless LAN, Hidden Nodes in Wireless Networks, Ordered MAC Techniques and Wireless Networks, Deterministic MACs for Wireless Networks, Comparison Of MAC Techniques for Wireless Networks; Infrared

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |



# BHILAI (C.G.) (An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

V/S Radio Transmission; IEEE 802.11, Architecture, Layers, Management; HIPERLAN; Bluetooth; Wireless Broadband (WiMAX), RFiD, Java Card., WLL. [7 Hrs.]

# UNIT-IV: Mobile network and Transport layer

Mobile Network Layer; Mobile IP, DHCP, ADHOC Networks; Mobile Transport Layer; Traditional TCP, Indirect TCP, Snooping TCP, Mobile TCP; Fast Transmit/Fast Recovery, Transmission/Time Out Freezing, Selective Retransmission, Transaction Oriented TCP. [7 Hrs.]

UNIT-V: Mobile System Development and Support: Wireless Application Protocol (WAP) – WAP Model, WAP Gateway, WAP Protocols WAP User Agent Profile and Caching, Wireless Bearers for WAP, WAP Developer Toolkits, Mobile Station Application Execution Environment Third-Generation Mobile Services - Paradigm Shifts in Third-Generation Systems W-CDMA and cdma2000, Improvements on Core Network, Quality Service in 3G Wireless Operating System for 3G Handset, Third-Generation Systems and Field Trials, Other Trial Systems, Impact on Manufacture and Operator Technologies. [8 Hrs.]

#### **Text Books:**

| S. No. | Title                                             | Author(s)            | Publisher                                                   |
|--------|---------------------------------------------------|----------------------|-------------------------------------------------------------|
| 1      | Mobile Communications                             | Schiller, Jochen     | Pearson Education Asia – Addison<br>WesleyLongman PTE. Ltd. |
| 2      | Wireless Communication Principles<br>and Practice | Theodore S Rappaport | Pearson Education                                           |

| S. No. | Title                                                         | Author(s)       | Publisher                  |
|--------|---------------------------------------------------------------|-----------------|----------------------------|
| 1.     | Mobile Data Wireless LAN<br>Technologies                      | Dayem, Rifaat A | Prentice Hall Internationa |
| 2.     | The Essential Guide to Wireless<br>Communication Applications | Dornan, A       | PearsonEducation Asia.     |
| 3.     | The Wireless Application Protocol                             | Sandeep Singhal | Pearson Education Asia     |
| 4.     | Third Generation Mobile<br>Telecommunication systems          | P. Stavronlakis | Springer Publishers        |

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |



BHILAI (C.G.)

(An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

| Subject Code<br>CS102625 | Robotics and Automation | L = 2 | T = 1 | <b>P</b> = 0 | Credits = 3  |
|--------------------------|-------------------------|-------|-------|--------------|--------------|
| Examination              | ESE                     | СТ    | TA    | Total        | ESE Duration |
| Scheme                   | 100                     | 20    | 30    | 150          | 3 Hours      |

| Course Objectives                                                                                                                                                                                                                                             | Course Outcomes                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                               | After successful completion of the course students will be able to:                                                                                                                                                                                                            |
| The objective of the course is:                                                                                                                                                                                                                               | CO1. Use matrix algebra and Lie algebra for computing                                                                                                                                                                                                                          |
| <ul> <li>To acquire the knowledge on advanced algebraic tools for the description of motion.</li> <li>To develop the ability to analyze and design the motion for articulated systems.</li> <li>3. To develop an ability to use software tools for</li> </ul> | <ul> <li>the kinematics of robots</li> <li>CO2. Calculate the forward kinematics and inverse kinematics of serial and parallel robots.</li> <li>CO3. Calculate the Jacobian for serial and parallel robot.</li> <li>CO4. Do the path planning for a robotic system.</li> </ul> |
| analysis and design of robotic systems.                                                                                                                                                                                                                       | <b>CO5</b> . Be proficient in the use of Maple or Matlab for the simulation of robots.                                                                                                                                                                                         |

**UNIT-I: Fundamental Concepts of robotics** History, present status & future trends-Robotics & automation-Laws of Robotics-Robot definitions, Robotics systems & robot anatomy-Specification of Robots-resolution, Repeatability & accuracy of a manipulator. Robot Drives & Power Transmission Systems & Control: Robot drive mechanisms, hydraulic-electric-pneumatic drives, mechanical transmission method-Rotary-to /Rotary motion conversion, Rotary –to linear motion conversion-End effectors-Types- in piping problem-Remote centered compliance devices-control of actuators in robotics mechanisms. **[8 Hrs.]** 

Unit-II: Sensors & Intelligent Robots Sensory devices-Non optical-position sensors-optical position sensors-Velocity sensors-Proximity sensors-contact & non-contact type-touch & slip sensors-Force & torque sensors-Al &Robotics. [7 Hrs.]

Unit-III: Computer Vision for Robotics Systems Robot vision systems-Imaging components-image representation-Hardware aspects-Picture coding, Object recognition & categorization-Visual inspection-Software Considerations-Application, Commercial robotics vision systems [7 Hrs.]

**Unit-IV: Transformations & Kinematics** Homogenous coordinates-coordinates references frames-Homogenous transformation for the manipulator-The forward & inverse problem of manipulator kinematics-

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |



# SHRI SHANKARACHARYA TECHNICAL CAMUS BHILAI (C.G.)

(An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

Motion generation Manipulator dynamics-Jacobian in terms of D-H matrices-Controller architecture. [7 Hrs.]

Unit-V: Robot Cell Design & Control Specification of commercial robots-Robots design & process specification-Motor selection in the design of a robotic joint-Robot cell layouts-Economic & social aspect of robotics. Application of Robots: Capabilities of Robots-Robotics applications-Obstacle avoidance-Robotics in India-The future of robotics Factor Automation-Hierarchical computer control. [7 Hrs.]

#### **Text Books:**

| S. No. | Title                                        | Author(s)                                                  | Publisher                                            |
|--------|----------------------------------------------|------------------------------------------------------------|------------------------------------------------------|
| 1.     | Robotics Engg-An Integrated Approach         | Richard D. Klafter, Thomas A.<br>Chmielewski Michael Negin | Eastern Economy<br>Edition Prentice Hall of<br>India |
| 2.     | Robotics Technology & Flexible<br>Automation | S. R. Deb and S. Deb                                       | McGrawHill 2 <sup>nd</sup> edition                   |

| S. No. | Title                                                     | Author(s)                        | Publisher                  |
|--------|-----------------------------------------------------------|----------------------------------|----------------------------|
| 1.     | Robotics: Control, Sensing, Vision&<br>Intelligence       | K.S.Fu, R.C. Gomalez, C.S.G. Lee | Tata McGraw Hill           |
| 2.     | Industrial Robots-Technology<br>Programming & application | MikellP. Groover et.al           | McGraw Hill                |
| 3.     | Handbook of Industrial Robotics                           | ShimanY. Nof. John               | Willey & Sons,<br>New York |

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |



## BHILAI (C.G.) (An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

## **Open Elective-I**

| Subject Code<br>CS100643 | Enterprise Resource Planning | L = 3 | T = 0 | <b>P</b> = 0 | Credits = 3  |
|--------------------------|------------------------------|-------|-------|--------------|--------------|
| Examination              | ESE                          | СТ    | ТА    | Total        | ESE Duration |
| Scheme                   | 100                          | 20    | 30    | 150          | 3 Hours      |

| Course Objectives                                                                                                                                                                                                                               | Course Outcomes                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>The Objective of the course is:</li> <li>To know the basics of ERP and business modules of ERP</li> <li>To understand the key implementation issues of ERP</li> <li>To be aware of some popular products in the area of ERP</li> </ul> | On successful completion of the course, the student<br>will be able to:<br><b>CO1</b> : Students will know the strategic importance<br>of Business models.<br><b>CO2</b> : Students will able to know about the working<br>of different modules in a manufacturing company<br><b>CO3</b> : Students will understand the information<br>system used in any company |
| • To appreciate the current and future trends in ERP                                                                                                                                                                                            | <b>CO4</b> : Students will understand the business model and implementing ERP                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                 | <b>CO5</b> : Students will learn to use commercial ERP packages                                                                                                                                                                                                                                                                                                   |

# UNIT 1:

INTRODUCTION: ERP: An Overview, Enterprise – An Overview, Origin, Evolution and Structure: Conceptual Mode of ERP, The Benefits of ERP, ERP and Related Technologies, Business Process Reengineering(BPR), Data Warehousing, Data Mining, OLAP, Product Life Cycle Management(PLM), Supply Chain Management(SCM). [7 Hrs.]

# **UNIT 2:**

ERP IMPLEMENTATION: ERP Implementation Lifecycle, Implementation Methodology, Hidden Costs, Organizing the Implementation, Role of SDLC/SSAD, Object Oriented Architecture Vendors, Consultants and Users, Contracts with Vendors, Consultants and Employees, Project Management and Monitoring. [7 Hrs.]

# **UNIT 3:**

THE BUSINESS MODULES: Business modules in an ERP Package, Finance, Manufacturing, Human Resources, Bills of Materials, Plant Maintenance, Materials Management, Quality Management, Sales and

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |



BHILAI (C.G.)

# (An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

Distribution, MRP, MRP II.

[7 Hrs.]

# UNIT 4:

THE ERP MARKET: ERP Marketplace and Marketplace Dynamics: Market Overview, Marketplace Dynamics, The Changing ERP Market. ERP- Functional Modules: Introduction, Functional Modules of ERP Software, Integration of ERP, Supply chain and Customer Relationship Applications. [7 Hrs.]

# **UNIT 5:**

ESENT AND FUTURE: ERP, ERP and Internet, Critical success and failure factors, Integrating ERP into organizational culture Using ERP tool: ERP Market Place, SAP AG, PeopleSoft, Baan, JD Edwards, Oracle, QAD, SSA.Turbo Charge the ERP System, EIA, ERP and e-Commerce, ERP and Internet, Future Directions **[8 Hrs.]** 

## **Text Books:**

| S. No. | Title                                                 | Author(s)                                   | Publisher                                 |
|--------|-------------------------------------------------------|---------------------------------------------|-------------------------------------------|
| 1      | ERP Demystified                                       | Alexis Leon                                 | Tata McGraw Hill                          |
| 2      | Enterprise Resource Planning Concepts<br>and Practice | Vinod Kumar Garg & N. K.<br>Venkitakrishnan | Prentice Hall of India<br>Private Limited |

| S. No. | TitleAuthor(s)                              |                                              | Publisher                     |
|--------|---------------------------------------------|----------------------------------------------|-------------------------------|
| 1      | ERP                                         | Devan Parag                                  | Excell Publishers             |
| 2      | Frontiers of E-Commerce                     | Ravi & B. Whinston                           | Addison Wesley                |
| 3      | Concepts in Enterprise Resource<br>Planning | Joseph A Brady, Ellen F<br>Monk, Bret Wagner | Thompson Course<br>Technology |

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |



BHILAI (C.G.) (An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

| Subject Code<br>CS100644 | Quantum Computing | L = 3 | <b>T</b> = <b>0</b> | <b>P</b> = 0 | Credits = 3  |
|--------------------------|-------------------|-------|---------------------|--------------|--------------|
| Examination              | ESE               | СТ    | TA                  | Total        | ESE Duration |
| Scheme                   | 100               | 20    | 30                  | 150          | 3 Hours      |

| Course Objectives                                                                                                                                                                                     | Course Outcomes                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>An introduction to quantum computation.</li> <li>To impart the necessary knowledge to develop and implement algorithms and write programs using these algorithms.</li> </ul>                 | After completion of course, student should be able to <b>CO1</b> . The basic principles of quantum computing. <b>CO2</b> . The fundamental differences between conventional computing and quantum computing.          |
| <ul> <li>Develop quantum algorithm.</li> <li>Program quantum algorithm on major toolkits.</li> <li>The algebra of complex vector spaces and quantum mechanics is covered within the course</li> </ul> | <ul><li>CO3. Several basic quantum computing algorithms.</li><li>CO4. The classes of problems that can be expected to be solved well by quantum computers.</li><li>CO5. Develop quantum logic gate circuits</li></ul> |

# **UNIT-I: Introduction to Quantum Computing**

Motivation for studying Quantum Computing., Major players in the industry (IBM, Microsoft, Rigetti, D-Wave etc.), Origin of Quantum Computing, Overview of major concepts in Quantum Computing, Qubits and multiqubits states, Bra-ket notation. Bloch Sphere representation, Quantum Superposition, Quantum Entanglement. [7 Hrs.]

## **UNIT-II: Math Foundation for Quantum Computing**

Matrix Algebra: basis vectors and orthogonality, inner product and Hilbert spaces, matrices and tensors., Unitary operators and projectors, Dirac notation, Eigen values and Eigen vectors. [7 Hrs.]

## **UNIT-III: Elements**

Building Blocks for Quantum Program, Architecture of a Quantum Computing platform, Details of q-bit system of information representation: Block Sphere, Multi-qubits States, Quantum superposition of qubits (valid and invalid superposition), Quantum Entanglement, Useful states from quantum algorithmic perspective e.g. Bell State, Operation on qubits: Measuring and transforming using gates., Quantum Logic gates and Circuit: Pauli, Hadamard, phase shift, controlled gates, Ising, Deutsch, swap etc. [8 Hrs.]

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |





# BHILAI (C.G.) (An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

# **UNIT-IV: Programming Model**

Programming model for a Quantum Computing Program, Steps performed on classical computer, Steps performed on Quantum Computer, Moving data between bits and qubits. Basic techniques exploited by quantum algorithms., Amplitude amplification, Quantum Fourier Transform, Phase Kick-back, Quantum Phase estimation, Quantum Walks [7 Hrs.]

UNIT-V Quantum Algorithms Major Algorithms, Shor's Algorithm, Grover's Algorithm, Deutsch's Algorithm, Deutsch -Jozsa Algorithm, OSS Toolkits for implementing Quantum program, IBM quantum experienc, Microsoft Q, RigettiPyQuil (QPU/QVM) [7 Hrs.]

#### **Text Books:**

| S. No. | Title                                       | Author(s)          | Publisher                     |
|--------|---------------------------------------------|--------------------|-------------------------------|
| 1      | Quantum Computation and Quantum Information | Michael A. Nielsen | Cambridge University<br>Press |
| 2      | Quantum Computing Explained                 | David McMahon      | Wiley                         |

| S. No. | Title                                    | Author(s) | Publisher |
|--------|------------------------------------------|-----------|-----------|
| 1      | IBM Experience:                          |           |           |
| 1      | https://quantumexperience,ng,bluemix.net | -         | -         |
|        | Microsoft Quantum Development Kit        |           |           |
| 2      | https://www.microsoft.com/enus/quantum   | -         | -         |
|        | /developmentkit                          |           |           |

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |



BHILAI (C.G.) (An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

| Subject Code<br>CS100645 | Digital Marketing | L = 3 | <b>T</b> = <b>0</b> | <b>P</b> = 0 | Credits = 3  |
|--------------------------|-------------------|-------|---------------------|--------------|--------------|
| Examination              | ESE               | СТ    | TA                  | Total        | ESE Duration |
| Scheme                   | 100               | 20    | 30                  | 150          | 3 Hours      |

| Course Objectives                                                                                                                                                                                                                                                                                                                                     | Course Outcomes                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul><li>The objective of the course is:</li><li>1. To provide students with the fundamentals and essentials of Digital Marketing Concepts and tools available.</li><li>2. To provide students a sound foundation of the Digital marketing tools so that they are able to start using and adopting these tools in their real life scenarios.</li></ul> | <ul> <li>After the completion of this course, the students will be able to:</li> <li>CO1. State Digital Marketing fundamentals.</li> <li>CO2. Describe the architecture of marketing&amp; various solutions.</li> <li>CO3. Paraphrase digital marketing tools&amp; describe tools management.</li> <li>CO4. Explain and enhance fundamental strategies.</li> <li>CO5. Apply various tools for web analytics.</li> </ul> |

Unit 1: Introduction to Digital Marketing, Digital Marketing vs traditional marketing, Importance of digital marketing, recent trends and current scenario of the industry, Marketing Automation, Influencer & Podcast, Web Remarketing, Design Essentials, Video Marketing The Art of Pitching [7 Hrs.]

Unit 2: Search Engine Optimization (SEO), Search Engine Marketing, search engine's results page (SERP), on-page and off-page optimization, keywords research, meta tags, meta description, link building, search volume, cost-per-click (CPC), customer lifetime value (CLV), call-to-action (CTA). cost-per-view (CPV), cost-per-impression (CPM) [7 Hrs.]

Unit 3: Social Media Marketing Using different social media platforms like Facebook, Instagram, YouTube, Twitter, LinkedIn, Pinterest, Google+, Snapchat, etc. Email Marketing : create and send product-based emails in bulk, open rate and conversion rate. Affiliate Marketing, Content Marketing & Strategy, Web Remarketing, Mobile Marketing, Adsense, Blogging, Video Marketing [7 Hrs.]

Unit 4: Web Analytics based on traffic source, referring sites, page views, and conversion rates of that website. E-Commerce Management Maintenance of an online product-listing website through product keyword research, product pricing, positive reviews, and customer retention. Online Reputation Management (ORM) [8]

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |



BHILAI (C.G.)

(An Autonomous Institution)

# SCHEME OF TEACHING AND EXAMINATION B.Tech. (Sixth Semester) Computer Science & Engineering [AI, AIML, BDA, GT]

# Hrs.]

Unit 5: Planning and Creating a Website, Design Essentials, Digital Media Planning and Buying, create a website on WordPress. Content Strategy: How to create content that matches the user intent and also your business goals. E-Commerce Management, Art of Pitching, ROI, cost-per-install (CPI), cost-per-order (CPO), cost-per-acquisition (CPA), click-through-rate (CTR) etc. [7 Hrs.]

#### **Text Books:**

| S. No. | Title                                                                              | Author(s)        | Publisher                                        |
|--------|------------------------------------------------------------------------------------|------------------|--------------------------------------------------|
| 1.     | Machine Learning                                                                   | Tom M. Mitchell  | McGraw-Hill Education<br>(India) Private Limited |
| 2.     | Introduction to Machine Learning<br>(Adaptive Computation and Machine<br>Learning) | EthemAlpaydin    | MIT Press                                        |
| 3.     | Machine Learning: An Algorithmic<br>Perspective                                    | Stephen Marsland | CRC Press                                        |
| 4.     | Pattern Recognition and Machine<br>Learning                                        | Bishop, C.       | Springer-Verlag                                  |

| S. No. | Title                                                                                                                                                      | Author(s)                                                        | Publisher               |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------|
| 1.     | Introduction to Artificial Intelligence and Expert Systems                                                                                                 | Dan W. Patterson                                                 | Prentice Hall of India. |
| 2.     | Hands-On Machine Learning with Scikit-<br>Learn, Keras, and TensorFlow: Concepts,<br>Tools, and Techniques to Build Intelligent<br>Systems (First Edition) | Aurelien Geron                                                   | O'Reilly Media          |
| 3.     | Dive into Deep Learning                                                                                                                                    | Aston Zhang, Zachary C. Lipton,<br>Mu Li, and Alexander J. Smola | E-Books                 |
| 4.     | Machine Learning for Humans                                                                                                                                | Vishal Maini ,Samer Sabri                                        | E-Books                 |

|               |                | July 2022          | 1.00    | Applicable for AY |
|---------------|----------------|--------------------|---------|-------------------|
| Chairman (AC) | Chairman (BoS) | Date of<br>Release | Version | 2022-23 Onwards   |