

Shri Shankaracharya Technical Campus, Bhilai

(An Autonomous Institute Affiliated to CSVTU Bhilai)

TEACHING AND EXAMINATION SCHEME

ELECTRICAL & ELECTRONICS ENGINEERING, B. Tech. Sixth Semester

SI.	Boord of Studios (BOS)	Courses (Subject)	Course	Period per Week		Period per S Week E		Scheme of Examination		Total Mark	Cr
No	Doard of Studies (DOS)	Courses(Subject)	Code	L	LT		Theory/Lab		edit		
•				Ľ	-	-	ESE	СТ	TA	•2	-
1.	Electrical and Electronics	Power Electronics Device & Circuits	EEE103601	2	1	-	100	20	30	150	4
2.	Electrical and Electronics	Signal& System	EEE103602	2	1	-	100	20	30	150	3
3.	Electrical and Electronics	Power System Analysis	EEE103603	2	1	-	100	20	30	150	3
4.	Electrical and Electronics	Professional Elective-II	(Refer Table-1)	2	1	-	100	20	30	150	3
5.	Electrical and Electronics	Open Elective-1	(Refer Table-2) [#]	3	-	-	100	20	30	150	3
6.	Electrical and Electronics	Power Electronics Device & Circuits lab	EEE103691	-	-	2	25	-	25	50	1
7.	Electrical and Electronics	Introduction to Python Program Lab	EEE103692	-	-	2	25	-	25	50	1
8.	Electrical and Electronics	Power System Simulation Lab	EEE103693	-	-	2	25	-	25	50	1
9	Electrical and Electronics	Minor Project-II	EEE103694	-	-	2	50	-	25	75	1
10.	10.Electrical and ElectronicsEssence of Indian Knowledge TraditionEEE103695		EEE103695	-	-	-	-	-	25	25	-
Total				11	4	8	625	100	275	1000	20

Table1 : Professional Elective-II						
Sl. No.	Board of Studies(BOS)	Course(Subject)	Course Code			
1.	Electrical & Electronics Engg	Communication System	EEE103621			
2.	Electrical & Electronics Engg	Testing & Commissioning of Electrical	EEE103622			
3.	Electrical & Electronics Engg	Computer Organization and Architecture	EEE103623			
4.	Electrical & Electronics Engg	Smart Grid Systems	EEE103624			
5.	Electrical & Electronics Engg	Wireless Power Transmission Technology	EEE103625			

Note:

(b) 1/4th of total strength of student subject to minimum of 20 students is required to offer an elective in the department in a Particular academic session.

 $(d) \ \ The \ duration \ of \ end \ semester \ examination \ of \ all \ theory \ papers \ will \ be \ of \ three \ hours.$

Table 2 attached in separate document

		October2022	1.00	Applicable for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2022-23Onwards

⁽a) Abbreviations used: L-Lecture, T-Tutorial, P-Practical, ESE-End Semester Exam, CT-Class Test, TA-Teacher's Assessment

⁽c) Choice of elective course once made for an examination cannot be changed in future examinations.

SYLLABUS

ELECTRICAL & ELECTRONICS ENGINEERING, B. Tech. Sixth Semester

Subject Code: EEE103601	Power Electronics Device & Circuits	L= 2	T = 1	$\mathbf{P} = 0$	Credits= 3
Evaluation Scheme	ESE	СТ	ТА	Total	ESE Duration
	100	20	30	150	3 Hours

Course Objectives	Course Outcomes
 To understand and develop the firing circuit requirement for different power semiconductor devices used as switches. 	On successful completion of the course, the student will be able to: CO1 To gain knowledge of various application of somiconductor switches by understanding
2. To understand the concepts of different types of AC-DC, DC-DC & DC-AC controlled converters for Industrial applications.	 controlled consistences by understanding their static and dynamic characteristics. constant the performance characteristics of controlled AC-DC converters for R. RL & RLE loads.
3. To analyze the effect of controlled and uncontrolled converters in Power system and their mitigation.	CO3 To gain knowledge on basic DC-DC converters and their operation under continuous /discontinuous mode of
4. To design and develop the commutation circuits for semi controlled power semiconductor devices.	conduction for RLE loadsCO4 To identify and formulate the requirements for four quadrant operation of DC motor.
5. To understand the rating specification for design and development of the protection circuits for Semiconductor devices.	CO5 To differentiate and understand the significance of various commutation circuits and their consequence on device stress
	CO6 To understand the principle of DC-AC conversion and the different topology for three phase to three phase and single phase to single phase DC-AC conversion.

UNIT I

Power Semiconductor Devices: Silicon controlled rectifier (SCR), structure, principle of operation, two transistor analogy, switching characteristics, trigger requirement, series and parallel operation of SCRs, ratings and protection, Triac structure and principle of operation only, Modern semiconductor devices, power BJT, MOSFET, IGBT structure, static characteristics. **[8hrs]**

UNIT II

Phase Controlled Rectifiers: Principle of phase control, performance parameters, single-phase half wave controlled mid -point full controlled converters and half controlled converters for R,RL and RLE load, comparison of controlled converters with and without freewheeling diode, Effect of source

		October2022	1.00	Applicable for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2022-23Onwards

CO1, CO2

SYLLABUS

ELECTRICAL & ELECTRONICS ENGINEERING, B. Tech. Sixth Semester

inductance in single-phase. Single phase dual converter in circulating and non circulating mode. Three-phase half wave and fully controlled bridge converter, three-phase semi-converter. **[12hrs]**

UNIT III

DC to DC Converters: Forced Commutation Techniques for thyristor: Self commutation, Impulse commutation, Resonant pulse commutation and Complementary commutation Principle of chopper operation, controlled strategies, step up chopper, step down chopper, chopper configurations, Performance parameter of step down chopper with R-L-E load for continuous and discontinuous conduction .Working principle of Voltage commutated, Current commuted and Load commuted thyristor chopper, Buck-boost converter.[10hrs]

UNIT IV

DC to AC Converter: Inverter: Classification of inverters, voltage source inverter, current source inverter, Series and modified series resonant thyristor inverter. Performance parameters of single phase half bridge and full bridge inverter for R-L loads, 3-phase inverter-180 degree and 120 degree conduction mode using ideal switches for balanced R load only. Pulse width modulated switching scheme for voltage control. SPWM and modified SPWM of 1-phase inverters, PWM with Unipolar and Bipolar Voltage Switching. (Elementary analysis. **[10hrs]**

UNIT V

Cyclo-converters & AC Controllers: Basic principle of operation, step-up and step down single-phase to single-phase cyclo-converter. Principle of On-off and phase control, AC controller circuit configurations, Performance parameters of Single phase bidirectional controllers for R and RL only **[8 hrs]**

Text Books:

S. No.	Title	Authors	Edition	Publisher
1	Power Electronics Circuits with the 8085 5/e	Muhammad H. Rashid	4^{th}	PHI Publishing
2	Power Electronics	P.S. Bhimbra	3 rd	Khanna Publishers

Reference Books:

S. No.	Title	Authors	Edition	Publisher
1	Power Electronics converters, applications and Design	Mohan, Undel and, Robbins	3 rd	John Wiley& Sons
2	A text book of Power Electronics	S.N Singh	2^{nd}	Dhanpat Rai & Co.(P)Ltd.
3	An Introduction to Thyristor and its applications	M. Ramamoorty	2^{nd}	East-West Press

		October2022	1.00	Applicable for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2022-23Onwards

CO5, CO6

CO3

Shri Shankaracharya Technical Campus, Bhilai

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

ELECTRICAL & ELECTRONICS ENGINEERING, B. Tech. Sixth Semester

Subject Code EEE103602	Signals & Systems	L = 2	T = 1	$\mathbf{P} = 0$	Credits = 3
Evaluation	ESE	СТ	ТА	Total	ESE Duration
Scheme	100	20	20	140	3 Hours

Cour	rse Objectives	Course Outcomes
1.	Represent and Classify signal and	On successful completion of the course, the student
	systems.	Will be able to:
2.	Obtain the response of a continuous, linear, time-	CO1 :- Analyze different types of signals.
	invariant, causal system by using convolution.	CO2:-Analyze different types of systems.
3.	Utilize the Laplace transform method to solve continuous linear time-invariant	CO3 :- Represent continuous and discrete systems in time and frequency domain using Laplace and Z-Transform.
4.	systems and to obtain transfer functions. Convert a continuous-time signal	CO4: - Students will understand the Fourier series, and Fourier transforms.
	to the discrete-time domain and reconstruct it using the sampling theorem.	CO5: -Students will understand the process of sampling and the effects of under-sampling.

UNIT-I Continuous and Discrete time signals

Representation of continuous and discrete time signals, shifting and scaling properties, Classification of continuous and discrete time signals: Periodic- aperiodic, even – odd, energy and power signals, Deterministic and random signals, continuous and discrete amplitude signals.[10 Hrs]

UNIT- II LTI System:

System properties: linearity: additivity and homogeneity, shift-invariance, causality, stability. Impulse response and step response, convolution, Characterization of causality and stability of linear shift invariant systems. System representation through differential equations.[10 Hrs]

UNIT- III Laplace Transform and Z-Transform:

Laplace Transform: region of convergence, poles and zeros of system, solution to differential equations and system behavior using Laplace Transformation

Z-transform (Single sided and Double sided): z-Transform for discrete time signals and systemsregion of convergence, z-domain analysis, Computation of Impulse response and Transfer function using Z-Transform, Characterization using difference equation.[**10 Hrs**]

		October2022	1.00	Applicable for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2022-23Onwards

CO2

CO1

SYLLABUS

ELECTRICAL & ELECTRONICS ENGINEERING, B. Tech. Sixth Semester

UNIT- IV Fourier Series and Fourier Transform

Fourier series representation of continuous and discrete time periodic signals, Continuous time Fourier Transform analysis with examples - properties of the Continuous time Fourier Transform basic Properties, convolution in time and frequency domains, magnitude and phase response. [10Hrs]

UNIT-V Sampling Theorem

CO5

CO4

The Sampling Theorem and its implications- Spectra of sampled signals. Reconstruction: ideal Interpolator, zero-order hold, first-order hold, and so on. Aliasing and its effects.**[8Hrs]**

S. No.	Title	Authors	Edition	Publisher
1)	Signals and Systems	A.V. Oppenheim, A.S. Willsky and I.T.	1983	Prentice Hall India
2)	Signals and Systems	Anand Kumar	2013	PHI
3)	Signals and Systems,	Simon Haykin and Barry Van Veen,	1999	John Wiley

S. No.	Title	Authors	Edition	Publisher
1)	Signals and Systems	I J Nagrarth	2001	Tata McGraw Hill
2)	Signals and Linear Systems	Robert A. Gabel, Richard A. Roberts,	1995	John Wiley and Sons
3)	Linear Systems and Signals	B. P.Lathi	2005	Oxford university Press

		October2022	1.00	Applicable for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2022-23Onwards

SYLLABUS

ELECTRICAL & ELECTRONICS ENGINEERING, B. Tech. Sixth Semester

Subject Code: EEE103603	Power System Analysis	L= 2	T = 1	$\mathbf{P} = 0$	Credits= 3
Evaluation	ESE	СТ	ТА	Total	ESE Duration
Scheme	100	20	30	150	3 Hours

Course Objectives	Course Outcomes
 This course is an extension of Electrical Power systems course. It deals with basic theory of transmission line modeling and their performance analysis. 	 On successful completion of the course, the student will be able to: CO1: Student should be able to make a one line representation of Power System. CO2: Student should be able to evaluate fault currents for different faults at different locations in Power System.
3. A detailed study of Power System stability, Load flow studies and economic power dispatch is part of the curriculum for students.	 CO3: Students should be able to identify cases of stable and unstable Power Systems. CO4: Analyse the steady state and transient stability of power system networks. CO5:Analyse the voltage profile of any given power system network using iterative methods.

UNIT- I Representation of Power System:

Single line diagram, impedance diagram, reactance diagram, equivalent impedance of three phase transformer, per unit quantities, P.U. impedance of three phase transformer, positive sequence impedance diagram in per unit system, Expression for three phase power in p.u. Systems **[8 hrs]**

UNIT-II Symmetrical Components:

Expression for positive, negative & zero sequence components, existence of sequence components of current & voltages for three phase circuit, sequence impedance of alternator & transmission line, Sequence network of unloaded generator, zero sequence network of three phase transformers, phase shift in star-delta transformer. **[10 hrs]**

UNIT- III Fault Calculations:

Single line to ground fault, Line to line fault, Double line to ground fault on unloaded generator, faults through impedance, open conductor faults, unsymmetrical fault on power system, Three phase short circuit on synchronous machine, Three phase short circuit on power system, Calculation of different current ratings and interrupting capacity of circuit breaker. **[12 hrs]**

		October2022	1.00	Applicable for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2022-23Onwards

CO1

CO2

SYLLABUS

ELECTRICAL & ELECTRONICS ENGINEERING, B. Tech. Sixth Semester

UNIT- Power System Stability:

CO4

The stability problem, steady-state stability, transient stability, Swing equation, Equal area criterion of stability, application of equal area criterion, critical clearing angle.[8 hrs]

UNIT-V a) Economic operation of power systems:

CO5 Input output curves, criteria for economical distribution of power between generating units in a plant, Expression for transmission line loss in terms of loss formula coefficients, criteria for economical distribution of power between generating plants

b) Load Flow Studies: Bus admittance matrix, formation of load flow equation, Gauss Shield method, Newton Raphson method.[6hrs]

S. No.	Title	Authors	Edition	Publisher
1	Elements of power system analysis	W.D. Stevenson	4th Ed.	Mc Graw Hill
2	Power System Engg	J.J. Nagrath& Kothari	2^{nd}	Tata McGraw Hill

Text Books:

Reference	Books:
------------------	---------------

S. No.	Title	Authors	Edition	Publisher
1.	Power System Analysis and Design	B.R. Gupta	3rd	S. Chand
2	Power System Engg.	BY A. Chakrabarti, M.L. Soni, P.V.Gupta, V.S.Bhatnager	6th	Dhanpat Rai & Co.
3	Electrical Power System	Ashfaq Hussain	4th	CBS Pub. & Dist.

		October2022	1.00	Applicable for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2022-23Onwards

SYLLABUS

ELECTRICAL & ELECTRONICS ENGINEERING, B. Tech. Sixth Semester

Subject Code EEE103691	Power Electronics Device & Circuits lab	L = 0	T = 0	P = 2	Credits = 1
Evaluation	ESE	СТ	ТА	Total	ESE Duration
Scheme	25		25	50	

List of Experiments

List of Experiments (At least ten experiments are to be performed by each student)

1. To study and plot the V-I characteristics of an SCR.

2. To study and plot the drain characteristics of a MOSFET.

3. To study and plot the drain characteristics of a IGBT.

4. To study single-phase half-wave bridge controlled rectifier for R and RL load.

5. To study single-phase full-wave bridge controlled rectifier for R and RL load with and without freewheeling diode.

6. To study of three-phase half-wave controlled rectifier for resistive load.

7. To study of three-phase full-wave controlled rectifier for resistive load.

- 8. To study step down and step up chopper circuit.
- 9. To study class A/B/C forced commutation chopper circuits.
- 10. To study Single Phase series inverter with R and RL loads.
- 11. To study Single Phase parallel inverter with R and RL loads.

12. To study the bipolar and unipolar switching scheme of a single phase full bridge inverter using MATLAB / PSPICE simulation.

13. To study the three phase VSI for 180/120 mode of conduction using MATLAB / PSPICE simulation.

14. To study Single Phase step down cyclo converter for R and RL loads.

15. To study single-phase AC voltage control by using TRIAC for R and RL loads.

		October2022	1.00	Applicable for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2022-23Onwards

SYLLABUS

ELECTRICAL & ELECTRONICS ENGINEERING, B. Tech. Sixth Semester

Subject Code EEE103692	Introduction to Python programming Lab	L = 0	$\mathbf{T} = 0$	P = 2	Credits = 1
Evaluation	ESE	СТ	ТА	Total	ESE Duration
Scheme	25		25	50	

List of Experiments

- 1. Write a program to demonstrate different number data types in python (script.py)
- 2. Write a program to perform different arithmetic operations on numbers in python
- 3. Write a program to create, concatenate and print a string and accessing sub-string from given string
- Write a python script to print the current date in the fallowing format "Sun May 29 02:26:23 IST 2017"
- 5. Write a program to create, append and remove lists in python
- 6. Write a program to demonstrate working with tuples in python
- 7. Write a program to demonstrate working with dictionaries in python
- 8. Write a program to find the largest number among the three input numbers
- 9. Write a Program to convert temperature in Celsius to Fahrenheit
- 10. Write a python program to construct the following pattern, using a nested for loop
- 11. Write a python script that prints prime numbers less than 20
- 12. Write a python program to find the factorial of a number using recursion

		October2022	1.00	Applicable for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2022-23Onwards

SYLLABUS

ELECTRICAL & ELECTRONICS ENGINEERING, B. Tech. Sixth Semester

Subject Code EEE103693	Power System Simulation Lab	L = 0	T = 0	P = 2	Credits = 1
Evaluation	ESE	СТ	ТА	Total	ESE Duration
Scheme	25		25	50	

List of Experiments

List of Experiments (At least ten experiments are to be performed by each student)

- 1. Simulation of different types of controllers (PID, PI, PLL).
- 2. Simulation for the addition of poles and zeros in a given transfer function.
- 3. Simulation of different types of filters.
- 4. Simulation of the performance of a full wave bridge rectifier for RL and RLC load.
- 5. Simulation of step up and step down choppers.
- 6. Simulation of chopper controlled DC motor.
- 7. Simulation and modeling of synchronous machine (Xd, Xd')
- 8. Write a program for computation of real, reactive power and line loss.
- 9. Write a program to plot V and inverted V curve.
- 10. Write a program for transformer parameter calculation.
- 11. Write a program for transmission line parameter calculation (Z, Y, A, B, C, D).
- 12. Write a program for load flow solution by Gauss Seidal Method.
- 13. Write a program for load flow solution by Newton Raphson Method.
- 14. Write a program for economic load dispatch calculation.

15. To Determine fault location in a cable. Requirements for the Simulation Lab: PSCAD, MiPower,

MATLAB/Simulink

		October2022	1.00	Applicable for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2022-23Onwards

SYLLABUS

ELECTRICAL & ELECTRONICS ENGINEERING, B. Tech. Sixth Semester

Subject Code:EEE103621	Communication Systems	L= 3	T = 1	$\mathbf{P} = 0$	Credits= 4
Evaluation	ESE	СТ	ТА	Total	ESE Duration
Scheme	100	20	30	150	3 Hours

Course Outcomes		
e, the ge of o. omplex ue and ue and ulation theory		
e, ti ge o. omplo ue an ulatio theo		

UNIT I

Amplitude Modulation: Need of modulation, Amplitude modulation, Amplitude Modulation Index, power relation. AM wave, generation of AM, balanced modular signal side band technique, suppression of unwanted sideband, side band transmission, demodulation, envelop detector, synchronous detector. [10hrs]

UNIT II

Angle Modulation: Mathematical equation of frequency modulation (FM), frequency spectrum, phase modulation (PM), relationship between PM and FM, pre-emphasis and de-emphasis, adjacent channel interference, comparison of narrow band and wide band FM, generation of FM, reactance modulator [10hrs]

UNIT III

Pulse Modulation System:Sampling theorem, Sampling of Low Pass and band pass signals,
Aliasing, Aperture effect, Basic principles of PAM, PWM and PPM, their generation and detection,
FDM, TDM, Comparison of TDM and FDM[10hrs]

UNIT IV

Digital Modulation Techniques: Pulse code modulation signal to quantization noise ratio, DPCM, DM and ADM, Digital transmission through Career Modulation: Fundamentals of Binary ASK, PSK

		October2022	1.00	Applicable for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2022-23Onwards

CO1. CO2

CO1

CO3, CO4

SYLLABUS

ELECTRICAL & ELECTRONICS ENGINEERING, B. Tech. Sixth Semester

and FSK; generation and detection of BASK, BPSK and BFSK, Differential phase shift keying [8hrs]

UNIT V

CO4, CO5

Information Theory: Introduction, Sources of information, Contents in DMS, Contents of a symbol, Entropy, Information rate, Discrete memory less channel, Conditional joint entropies, mutual information, Channel capacity, Source coding, Coding efficiency, Entropy coding. [9 hrs]

TextBooks:

S. No.	Title	Authors	Publisher
1	Principles of Communication Systems	Taub and Shilling	Tata Mc Graw Hill
2	A Text Book of Analog & Digital Communication	P. Chakrabarti	DhanpatRai& Co
3	The 8051 Micro Controller and Embedded Systems Using Assembly and C, Second Edition	Muhammad Ali Mazidi Janice GillispieMazidiRolin D. McKinlay	Second Edition

S. No.	Title	Authors	Publisher
1	Electrical Communication Systems	Kennedy	ТМН
2	Digital Communications	Sanjay Sharma	S.K. Kataria& Sons, New Delhi

		October2022	1.00	Applicable for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2022-23Onwards

SYLLABUS

ELECTRICAL & ELECTRONICS ENGINEERING, B. Tech. Sixth Semester

Subject Code: EEE103622	Testing and Commissioning of Electrical Equipments	L= 2	T = 1	$\mathbf{P} = 0$	Credits= 3
Evaluation	ESE	СТ	ТА	Total	ESE Duration
Scheme	100	20	30	150	3 Hours

Course Objectives	Course Outcomes
1. To learn the industrial standards in testing and commissioning of electrical equipments.	On successful completion of the course, the student Will be able to: CO1: After studying the subject students will be able to understand the common problems arising while
2. To understand the common problems in installing and commissioning of electrical equipments.	commissioning of electric equipments. CO2: They will also be able to learn about the routine tests to be performed and maintenance measures for various equipments. CO3: Trouble shooting chart for various electrical equipment's, machines and domestic appliances.
3. To learn about safety measures and maintenance procedures for various electrical equipments.	CO4: Preparation of maintenance schedule of different equipment and machines. CO5: Familiar about electrical safety regulations and rules during maintenance

UNIT-I Power Transformers:

Insulation resistance measurement and Meggering electrical equipment, temperature effect, polarization index, causes of poor insulation resistance, Drying out of transformer, Checks before paralleling, parallel operation Commissioning checks, Maintenance of transformer, maintenance of bushing and tap changers, Functions of breather, conservator, Troubles, Causes of failures, Ratings, Significance of impedance voltage, voltage regulation , Inspection, Storage, Handling, Transportation, civil works, site facilities, Commissioning tests capitalization of losses, Transformers oil: types, composition, properties, maintenance, testing, filtration, insulation resistance. **[6 hrs]**

UNIT-II Instrument transformers/Traction, Rectifier Transformer:

Current transformers (CT): applications, accuracy class, magnetization curve, burden, effect of open secondary, terms and definitions, type tests, routine tests on CTs, precautions, typical ratings, Voltage transformer (VT, PT): application, specifications, ratings, connections, accuracy class, and burdens, Types of VT construction. Traction transformers: Types, Special considerations, design and constructional features, Traction transformers for thyristor-controlled locomotives, Rectifier transformers: comparison between rectifier transformer and power transformer, utility factor, design feature of rectifier transformer, transductors. **[8 hrs]**

		October2022	1.00	Applicable for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2022-23Onwards

CO1

SYLLABUS

ELECTRICAL & ELECTRONICS ENGINEERING, B. Tech. Sixth Semester

UNIT-III Rotating machines:

Troubles with D.C. Machines and Remedies, Troubles with Commutator, Maintenance of Commutator and Brushes, Troubles with D.C. Motors, Test to detect the causes of the troubles, Earth-fault Test. Testing of Induction Motors: Type Tests, Routine Tests, Commissioning Tests, Degree of Protection, Noise and its Control, Explosion Proof Motor, Installation and commissioning of induction machine and Rotating Machines. **[10 hrs]**

UNIT-Parameters of Industrial Rotating Machines:

Drying-Out of Electrical Rotating Machines and Insulation Resistance Measurements Steps in drying-Out, Permissible Temp-rise, Log-sheets, Insulation Resistance, Power Required, Period of Drying Out, Polarisation Index, Definition of Degree of Protection and cooling Systems, standard IP codes, Definition, Types, Standard Designations, IC Code, Ratings of Industrial Rotating Machines: Thermal Rating, Operation Duties, Duty factor, Continuous Rating, Intermittent Duty, Short Time Duty STR, DTR, MCR.[8 hrs]

UNIT-V Safety Precautions and live line Maintenance:

Shocks, Safety procedures, Permission to work, Safety Clearances, Procedures, Permit to work, Electric Field and Clearances, Live Line Maintenance, Hot-Line Maintenance, Safety, tools, Degree of Exposures, Biological effects of Electric Field, Electric shock and effects. [8hrs]

S. No.	Title	Authors	Edition	Publisher
1	Testing Commissioning Operation & Maintenance of Electrical	S. Rao	6th edition	Dhanpat Rai& Sons.
2	Electrical power equipment maintenance and testing	Paul Gill	2008	CRC Press

Reference Books:

Text Rooks

S. No.	Title	Authors	Edition	Publisher
1.	Transformers			Bharat Heavy
	Transformers			Electrical Limited

		October2022	1.00	Applicable for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2022-23Onwards

CO3

CO4

SYLLABUS

ELECTRICAL & ELECTRONICS ENGINEERING, B. Tech. Sixth Semester

Subject Code: EEE103623	Computer Organization and Architecture	L= 3	T = 0	$\mathbf{P} = 0$	Credits= 3
Evaluation Scheme	ESE	СТ	ТА	Total	ESE Duration
	100	20	30	150	3 Hours

Course Objectives	Course Outcomes
 To learn the industrial standards in testing and commissioning of electrical equipments. To understand the common problems in installing and commissioning of electrical equipments. To learn about safety measures and maintenance procedures for various electrical equipments. 	 On successful completion of the course, the student Will be able to: CO1:Understand the concepts of microprocessors, their principles and practices. CO2: Write efficient programs in assembly language of the 8086 family of microprocessors. CO3: Organize a modern computer system and be able to relate it to real examples. CO4: Develop the programs in assembly language for 80286, 80386 and MIPS processors in real and protected modes. CO5: Implement embedded applications using ATOM processor.

UNIT- I Introduction to computer organization :

Architecture and function of general computer system, CISC Vs RISC, Data types, Integer Arithmetic - Multiplication, Division, Fixed and Floating point representation and arithmetic, Control unit operation, Hardware implementation of CPU with Micro instruction, microprogramming, System buses, Multi-bus organization. [6 hrs]

UNIT-II Memory organization :

System memory, Cache memory - types and organization, Virtual memory and its implementation, Memory management unit, Magnetic Hard disks, Optical Disks. [6 hrs]

UNIT-III Input – output Organization :

Accessing I/O devices, Direct Memory Access and DMA controller, Interrupts and Interrupt Controllers, Arbitration, Multilevel Bus Architecture, Interface circuits - Parallel and serial port. Features of PCI and PCI Express bus. **[8 hrs]**

UNIT-IV 16 and 32 microprocessors :

80x86 Architecture, IA – 32 and IA – 64, Programming model, Concurrent operation of EU and BIU, Real mode addressing, Segmentation, Addressing modes of 80x86, Instruction set of 80x86, I/O addressing in 80x86 [8 hrs]

		October2022	1.00	Applicable for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2022-23Onwards

CO2

CO1

CO3

SYLLABUS

ELECTRICAL & ELECTRONICS ENGINEERING, B. Tech. Sixth Semester

UNIT-V Pipelining :

CO5

Introduction to pipelining, Instruction level pipelining (ILP), compiler techniques for ILP, Data hazards, Dynamic scheduling, Dependability, Branch cost, Branch Prediction, Influence on instruction set. [8hrs]

Text Books:

S. No.	Title	Authors	Edition	Publisher
1	Computer organization	V. Carl, G. Zvonko and S.	1978	McGraw Hill
2	The Intel microprocessors	B. Brey and C. R. Sarma	2000	Pearson Education

S. No.	Title	Authors	Edition	Publisher
1.	Modern Embedded Computing	P. Barry and P. Crowley	2012	Morgan Kaufmann

		October2022	1.00	Applicable for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2022-23Onwards

SYLLABUS

ELECTRICAL & ELECTRONICS ENGINEERING, B. Tech. Sixth Semester

Subject Code: EEE103624	Smart Grid Systems	L= 2	T = 1	$\mathbf{P} = 0$	Credits= 3
Evaluation Scheme	ESE	СТ	TA	Total	ESE Duration
	100	20	30	150	3 Hours

Course Objectives	Course Outcomes
	On successful completion of the course, the student
1. To introduction to Smart Grid	Will be able to:
technologies and understand various	CO1:- Understand the concept and evolution of smart
Power quality issues	grid.
	CO2:-Smart grid communication and measurement
2. To understand Renewable Energy and	technologies like Phasor Measurement Unit (PMU),
its storage options for smart grid	Smart meters, Wide Area Monitoring system (WAMS)
technologies.	etc.
	CO3:- Power quality issues in micro grids like modelling
3. To understand Smart Grid measurement	and stability analysis, regulatory standards and
& communication technology.	economics and basic smart grid concepts.
	CO4: -know about the information and Communication
	Technology For Smart Grid
	CO5:- Understanding the concept of Distributed Energy
	Resources.

UNIT-I Introduction to Smart grid :

Introduction to Smart Grid: Evolution, Concept ,Definitions, Need, Functions, Opportunities & Barriers of Smart Grid, Difference between conventional & smart grid, Concept of Resilient & Self-Healing Grid, Present development & International policies in Smart Grid.[8 hrs]

UNIT-II Smart Grid Communications and Measurement Technology:

Communication and Measurement -Monitoring, Phasor Measurement Unit (PMU), Smart Meters, Wide area monitoring systems (WAMS) -Advanced metering infrastructure- GIS and Google Mapping Tools, IP-based Systems, Network Architectures.[10 hrs]

UNIT- III Power Quality Management in Smart Grid:

Power Quality & EMC in Smart Grid, Power Quality issues of Grid connected Renewable Energy Sources, Power Quality Conditioners for Smart Grid, Web based Power Quality monitoring, Power Quality Audit.[10 hrs]

UNIT-Information and Communication Technology for Smart Grid:

Advanced Metering Infrastructure (AMI), Home Area Network (HAN), Neighbourhood Area Network (NAN), Wide Area Network (WAN). Bluetooth, Zig-Bee, GPS, Wi-Fi, Wi-Max based communication, Wireless Mesh Network, Broadband over Power line (BPL). Adaptive filters and applications. **[10 hrs]**

		October2022	1.00	Applicable for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2022-23Onwards

CO1

CO2

CO3

SYLLABUS

ELECTRICAL & ELECTRONICS ENGINEERING, B. Tech. Sixth Semester

UNIT-V Distributed Energy Resources:

CO5

Distributed Energy Resources: Small scale distributed generation, Distributed Generation Technology, Internal Combustion Engines, Gas Turbines, Combined Cycle Gas Turbines, Micro turbines, Fuel Cells, Solar Photovoltaic, Solar thermal, Wind power, Geothermal, - all sources as a DG.[10hrs]

Text Books:

S.			Edition	
No.	Title	Authors		Publisher
1	Smart Grid Systems: Modeling and Control	N. Ramesh Babu	1 st Edition, 2021	CRC, Press
2	Smart Grid: Fundamentals of Design and Analysis	James A. Momoh	2012	Wiley-IEEE Press

S.			Edition	
No.	Title	Authors		Publisher
1.	Smart Grid Fundamentals Energy Generation, Transmission and Distribution	Radian Belu	2022	CRC Press

		October2022	1.00	Applicable for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2022-23Onwards

SYLLABUS

ELECTRICAL & ELECTRONICS ENGINEERING, B. Tech. Sixth Semester

Subject Code EEE103625	Wireless Power Transmission Technology	L = 2	T = 1	P = 0	Credits = 3
Evaluation	ESE	СТ	ТА	Total	ESE Duration
Scheme	100	20	30	150	3 Hrs

COURSE OBJECTIVES	COURSE OUTCOMES		
The main objective of the course is to: This course explains the fundamental principles and latest advances in wireless power transfer (WPT) and illustrates key applications of this emergent technology. This also imparts knowledge about various mitigation of WPT problem and compensation for inductor power transfer. Demand for safe power transfer and durable operation are the main objective of the course	At the end of the course, the students can: CO1: Able to Information about the transformers. Leakage inductance. Circuit compensation principles. Low-order compensations CO2: Able to implement the application of power electronics. Knowledge about the Power Converters Fundamentals CO3: An understanding of the fundamental principles of WPT for cable-free transfer of power. The method of handling compensation for inductor power transfer. CO4: Appropriate compensation in design. Lighting systems. Battery charging profiles. Electric vehicle charging. CO5: After the successful completion, student will get idea of demand for safe power transfer and durable operation.		

UNIT-I

Basic Circuit Theory: Review of transformers. Leakage inductance. Circuit compensation principles. Low-order compensations; series and parallel compensations. Resonance and operating frequency. Efficiency equation. [4 Hrs]

UNIT-II

Power Converters Fundamentals: Power Converters Fundamentals DC-DC converters. AC-DC converters and inverters.PWM and soft switching principles. Basic topologies with transformers. Input, output and transfer characteristics of power converters. Incorporation of leaky transformer. Control methods. [5Hrs]

UNIT-III

Compensation Configurations: Types of compensation for inductor power transfer. Characteristics for various termination requirements. Design for load-independence output voltage and output current. Efficiency optimization. [12Hrs]

		October2022	1.00	Applicable for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2022-23Onwards

CO1

CO2

SYLLABUS

ELECTRICAL & ELECTRONICS ENGINEERING, B. Tech. Sixth Semester

UNIT-IV

CO4

Applications: Circuit requirements for various loading conditions. Characteristics of LED loads, resistors and battery loads. Appropriate compensation design. Lighting systems. Battery charging profiles. Electric vehicle charging. Energy efficiency metric for charging. [8Hrs]

UNIT-V

CO5

Technology Trends: Demand for safe power transfer and durable operation. Portable and smart devices. Mobile communication devices. IoT devices and systems. Sensors. Solid state lighting development. Battery technologies. Electric vehicle development. Renewable source integration trends. Future trends and demand for wireless power transfer. **[7Hrs]**

Text Books:

S. No.	Title	Authors	Edition	Publisher
1	Wireless Power Transfer for Electric Vehicles and Mobile Devices	C. T. Rim and C. Mi	2017	New York: IEEE Press Wiley
2	Wireless Power Transfer	J. I. Agbinya	2015	River Publishers

S. No.	Title	Authors	Edition	Publisher
1	Elements of Power Electronic	Philip T. Krein	ISBN-10: 0195117018	Oxford University Press, USA
2	Design of a single-stage inductive power-transfer converter for efficient EV battery charging	Z. Huang, S. C. Wong, and C. K. Tse	2017	IEEE Transactions on Vehicular Technology, vol. 66, no. 7, pp. 5808-5821, July 2017
3	Self-oscillating resonant converter with contactless power transfer and integrated current sensing transformer	L. Xu, Q. Chen, X. Ren, S. C. Wong, and C. K. Tse	2017	IEEE Transactions on Power Electronics, vol. 32, no. 6, pp. 4839-4851, June 2017

		October2022	1.00	Applicable for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2022-23Onwards

SYLLABUS

ELECTRICAL & ELECTRONICS ENGINEERING, B. Tech. Sixth Semester

Subject Code EEE100647	Hybrid Electric Vehicle	L = 2	T = 1	$\mathbf{P} = 0$	Credits = 3
Evaluation	ESE	СТ	ТА	Total	ESE Duration
Scheme	100	20	30	150	3 Hrs

COURSE OBJECTIVES	COURSE OUTCOMES
 The main objective of the course is to: Basic concepts of electric and hybrid vehicles. Discussion of various energy storage technologies for their use in electric and hybrid vehicles. Discussion of electric propulsion system and its constituents. 	At the end of the course, the students can: On successful completion of this course, students should be able to: CO1: Analyze the working of Electric and Hybrid Electric Vehicle CO2: Analyze the various electric drive train and power management scheme CO3: Describe the role of Electric Propulsion System in the development of Electric and Hybrid Electric Vehicle CO4: Understand the different strategies related to energy storage systems and energy
	management sualegies

UNIT-I Classification and Configuration of vehicular technology:

Basics of vehicle performance, vehicle power source characterization, transmission characteristics of conventional vehicles. History electric and hybrid electric vehicles, social and environmental importance of electric and hybrid electric vehicles, impact of modern drive trains on energy supplies.

UNIT-II

Hybrid Electric Drive-trains: Basic concept of hybrid traction, introduction to various hybrid drive train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis. Electric Drive- trains: Basic concept of electric traction, introduction to various electric drive-train topologies, power flow control in electric drive-train topologies, fuel efficiency analysis. [7Hrs]

UNIT-III

Electric Propulsion unit: Introduction to electric components used in hybrid and electric vehicles, Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency. [10Hrs]

UNIT-IV

Energy Storage: Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Battery based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Super Capacitor based energy storage and its analysis, Flywheel based energy storage and its analysis, Hybridization of different energy storage devices. Sizing the drive system: Matching the electric

		October2022	1.00	Applicable for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2022-23Onwards

CO3

CO1

[6Hrs]

CO2

SYLLABUS

ELECTRICAL & ELECTRONICS ENGINEERING, B. Tech. Sixth Semester

machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems

[9Hrs] CO4

UNIT-V CO4 Energy Management Strategies: Introduction to energy management strategies used in hybrid and electric vehicles, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy management strategies. Case Studies: Design of a Hybrid Electric Vehicle (HEV), Design of a Battery Electric Vehicle (BEV). [8Hrs]

Text Books:

S. No.	Title	Authors	Edition	Publisher
1	Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives	C. Mi, M. A. Masrur and D. W. Gao	2011	John Wiley & Sons
2	Electric and Hybrid Vehicles: Design Fundamentals	Iqbal Hussein	1st edition,2 016	CRC Press (Taylor & Francis group)

S. No.	Title	Authors	Edition	Publisher
1	Electric Vehicle Technology Explained	James Larminie, John Lowry	2nd edition,2012	Wiley
2	Electric and Hybrid Vehicles	T. Denton	2016	Routledge

		October2022	1.00	Applicable for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2022-23Onwards

SYLLABUS

ELECTRICAL & ELECTRONICS ENGINEERING, B. Tech. Sixth Semester

Subject Code EEE100648	Grid Integration of Renewable Energy	L = 2	T = 1	$\mathbf{P} = 0$	Credits = 3
Evaluation	ESE	СТ	ТА	Total	ESE Duration
Scheme	100	20	30	150	3 Hrs

COURSE OBJECTIVES	COURSE OUTCOMES		
 The main objective of the course is to: A strong understanding of power systems, their operation and control focused on the issues related to the integration of distributed renewable generation into the network. Strong foundation for power system equipments used for integration. Detailed knowledge about power quality and its management along with approaches for grid stabilization. Deep understanding about integration techniques for RE sources. 	At the end of the course, the students can: On successful completion of this course, students should be able to: CO1: Apply advanced knowledge of electrical power system operations and control to analyze the challenges and opportunities for distributed renewable generation in both large interconnected grid and micro grid settings. (Test 1, 2, 3 and 4) CO2: Assess renewable energy applications and projects in the context of integration into both the physical and economic electricity markets. (Test 1 and 2) CO3: Describe the principles and requirements of the next generation future power network, incorporating distributed generation and storage and demand management. (Test 2 and 3) CO4: Understand the principles, power and limitations of complex power networks incorporating distributed generation and storage. (Test 1, 2, 3 and 4)		

UNIT-I Introduction :

Various techniques of utilizing power from renewable energy sources, concept of nano/micro/mini grid. Need of integrating large renewable energy sources, issues related to integration of large renewable energy sources, rooftop plants. Concept of VPP. [4 Hrs]

UNIT-II

Power system equipments for grid integration Synchronous generator: grid, load sharing during parallel operation, stability (swing equation and solution) Induction Generator: working principle, classification, stability due to variable speed and counter measures Power Electronics: need of power electronic equipments in grid integration, converter, inverter, chopper, ac regulator and cyclo converters for AC/DC conversion [5 Hrs]

UNIT-III

Power quality and management: THD, voltage sag, voltage swell, frequency change and its effects, network voltage management, frequency management, system protection, grid codes. **[12 Hrs]**

		October2022	1.00	Applicable for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2022-23Onwards

CO1

CO2

SYLLABUS

ELECTRICAL & ELECTRONICS ENGINEERING, B. Tech. Sixth Semester

UNIT-IV

CO4

Grid stabilization : Scheduling and dispatch, Forecasting, reactive power and voltage control, frequency control, operating reserve, storage systems, electric vehicles Ancillary services in Indian Electricity Market (regulatory aspect), CERC and CEA orders (technical and safety standards **[8 Hrs]**

UNIT-V

CO4

Integration of alternate sources of energy : Introduction, principles of power injection: converting technologies, power flow; instantaneous active and reactive power control approach; integrating multiple renewable energy sources; DC link integration; AC link integration; HFAC link integration; islanding and interconnection. [7Hrs]

Text Books:

S. No.	Title	Authors	Edition	Publisher
1	Integration of Alternative sources of Energy	Felix A. Farret and M. Godoy Simoes	2006	IEEE Press – Wiley-Inter science publication,
2	Grid integration of solar photovoltaic systems	Majid Jamil, M. Rizwan, D.P.Kothari,	2017	CRC Press (Taylor & Francis group)

S. No.	Title	Authors	Edition	Publisher
1	Wind Power Integration connection and system operational aspects	B. Fox, D. Flynn L. Bryans, N. Jenkins, M. O' Malley, R. Watson and D. Milborrow	2007	IET Power and Energy Series 50 (IET digital library)
2	Power Electronics: Circuits, Devices, and Applications	M.H.Rashid	2013	Pearson Education India

		October2022	1.00	Applicable for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2022-23Onwards