SHRI SHANKARACHARYA TECHNICAL CAMPUS

Bhllal (Chhattisgarh)

An Autonomous Institute Approved by AICTE, New Delhi Affiliated to CSV Technical University, Bhilai

All B Tech Courses*Accredited by NBA, New Delhi Accredited by NAAC with "A" Grade

cation Society)

ejeli Ed

Estd. 1999

स्वशासी संस्थान NIRF Ranking 2020 & 2021 (Band 251-300) Beat NSS Unit (National Level) An ISO 9001:2015 Certified Institution

भिदाई (छन्तीसगढ़)

श्री शंकराचार्य टेक्नीकल कैम्पस

SCHEME OF TEACHING AND EXAMINATION (Effective from 2020 – 2024 Batch) B Tech (Eighth Semester, Electrical Engineering)

SI.	Board of Studies	Courses	Course	Period per Week		Scheme of Examination		To Ma	Cre		
No.	(BOS)	(Subjects)	Code	т	т	D	Theory/Lab			tal rks	edit
				L	1	1	ESE	СТ	ТА		
1.	Electrical Engineering	High Voltage Engineering	EE104801	3	1	-	100	20	30	150	4
2.	Electrical Engineering	Professional Elective-IV	Refer Table -IV	2	1	-	100	20	30	150	3
3.	Electrical Engineering	Open Elective-III	Refer Table -V	3	-	-	100	20	30	150	3
4.	Electrical Engineering	High Voltage Engineering Lab	EE104891	-		2	25	-	25	50	1
5.	Electrical Engineering	Utilization of Electrical Engineering Lab	EE104892	-		2	25	-	25	50	1
6.	Electrical Engineering	Major Project Phase-II	EE104893	-		16	300	-	150	450	8
	Total			8	2	20	650	60	290	1000	20

Table-IV Professional Elective-IV

S.N	Board of Studies (BOS)	Subject Code	Program Elective-I
1	Electrical Engineering	EE104821	Utilization of Electrical Engineering
2	Electrical Engineering	EE104822	Power System Dynamics
3	Electrical Engineering	EE104823	Computer Aided Power System
4	Electrical Engineering	EE104824	VLSI Design
5	Electrical Engineering	EE104825	Artificial Neural Network & Fuzzy Logic

L-Lecture	T-Tutorial	P-Practical
CT-Class Test	TA-Teachers Assessment	ESE-End Semester Exam

		July 2022	1.00	Applicable for AY 2022-23 Onwards
Chairman (AC)	Chairman (BoS)	Date of Release	Version	

Table-V Open Elective-III

S.N	Board of Studies (BOS)	Subject Code	Open Elective-III
1	Electrical Engineering	EE100841	Energy Auditing and Management
2	Electrical Engineering	EE100842	Power System Planning & Management

Subject Code	EE104801	L = 2	T = 1	P = 2	Credits = 3
Subject	High Voltage Engineering	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	30	150	3 Hrs

COURSE OBJECTIVES	COURSE OUTCOMES
1. To get a fair knowledge about the	Students will be able to: CO1: Describe the principles behind generating high $DC = AC$ and impulse
and currents.	voltages.
2. Understand the concept of solid, liquid and	CO2: Develop equivalent circuit models of the different high voltage
gaseous dielectrics 3 Determining economic sharing of	CO3: Perform a dynamic response analysis of high voltage measurement
generations for a given loading condition.	systems.
4. Gain knowledge in testing of high voltage	CO4: Compute the breakdown strength of gas, liquids and solids insulation
equipments.	CO5: Evaluate Insulation life and accelerated tests.

UNIT I: Conduction and Breakdown in Gases: [CO1]	[8Hrs]
Gases as insulating media, Ionisation processes. Townsend current growth equation. Current growth in the	
presence of secondary processes. Townsend's criterion for breakdown. Experimental determination of	
ionization coefficients. Breakdown in electronegative gases, time lags for breakdown, streamer theory of	
breakdown in gases, Paschen's law, Breakdown in non-uniform field and corona discharges, Post	
breakdown phenomena and applications, practical considerations in using gases for insulation purposes.	
UNIT II: Conduction and breakdown in liquid dielectrics: [CO2]	[8Hrs]
Pure liquids and commercial liquids, conduction and breakdown in pure liquids.	
Breakdown in solid dielectrics:	
Introduction, Intrinsic breakdown. Electromechanical breakdown, Thermal break down. Breakdown of solid	
dielectrics in practice.	
UNIT III: Generation of high voltage and currents: [CO3]	[8Hrs]
Generation of high D.C, voltages, Generation of high alternating voltages, Generation of Impulse voltages.	
Tripping and control of impulse generators. Generation of Impulse currents.	
UNIT IV: Measurement of High Voltages and Current: [CO4]	[6Hrs]
Measurement of high D.C. voltages. Measurement of high D.C. and impulse voltages. Introduction.	
Measurement of high D.C. A.C. and impulse currents, cathode ray oscillographs for impulse voltages and	
currents measurements.	
UNIT V: Non-destructive testing of materials and electrical apparatus: [CO5]	[6Hrs]
Introduction. Measurement of D.C. resistivity. Measurement of dielectric constant and loss factor. Partial	
discharge measurements.	
High voltage testing of electrical apparatus:	
Testing of insulators and bushings. Testing of isolators and circuit breakers, cables. Testing of transformers,	
surge diverter Radio Interference measurements.	

	Text Books:		
S. No.	Title	Author(s)	Publisher
1.	High Voltage Engineering	M.S. Naidu & V.Kamraju	TMH Pbs.
2.	An Introduction to High Voltage Engineering	Subir Ray	PHI.
3.	High Voltage Engineering	C.L.Wadhwa	New Age International Publishers

S. No.	Title	Author(s)	Publisher
1.	High voltage Insulation Engineering	Ravindra Arora	New Age International
2.	High Voltage Engineering	Dr.R.S.Jha	DhanpatRai and Co. (P) Ltd.
3.	Extra High Voltage A.C. Transmission Engineering	R.D. Begamudre	Wiley Eastern Limited.
4.	High voltage Engineering,	D. V. Razevig and Chaurasia	khanna pbs.

Subject Code	EE104821	L = 2	T = 1	P = 2	Credits = 3
Subject	Utilization of Electrical Energy	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	30	150	3 Hrs

Course Objectives	Course Outcomes	
The objective of the course to:	Students will be able to:	
1. This course provides an introduction to	CO1: To understand the operating principles and characteristics of traction	motors with
the principles of electrical drives and their	respect to speed, temperature, loading condition.	
applications.	CO2: To acquaint with the different types of heating techniques.	
2 This course deals with the fundamentals	CO3: To study the basic principles of illumination and its measurement.	
of illumination and its classification.	CO4: Design and develop smart electrical heating and welding systems	through the
	use of modern Electrical Engineering	
3. This course provides knowledge on	CO5: To understand the method of calculation of various traction system	for braking,
electrical traction systems.	acceleration and other related parameters, including demand side manageme	ent.
UNIT 1 Electric Drives, Elevators and Its I	ndustrial Applications: [CO1]	[8 Hrs]
Introduction, Factors affecting selection of M	otor, Types of Load, Steady State Characteristics of Drives, Transient	
Characteristics, Size of Motor, Load Equalizat	ion, Industrial Applications, Speed Control Systems.	
UNIT 2 Electric Heating:	[CO2]	[8 Hrs]
Heating methods: Resistance heating - direct	and indirect resistance heating, electric ovens, their temperature range,	
properties of resistance heating elements, don	estic water heaters and other heating appliances and thermostat control	
circuit, Induction heating; principle of core typ	e and coreless induction furnace.	
UNIT 3 Illumination:	[CO3]	[6 Hrs]
Introduction, terms used in illumination, laws	of illumination, polar curves, photometry, integrating sphere, sources of	
light. Discharge lamps, MV and SV lamps co	omparison between tungsten filament lamps and fluorescent tubes, Basic	
principles of light control, Types and design of	lighting and flood lighting.	
UNIT 4 Electric Welding:	[CO4]	[8 Hrs]
Advantages of electric welding, Welding me	thod, Principles of resistance welding, types, Principle of arc production,	
electric arc welding, characteristics of arc; carl	oon arc, metal arc, hydrogen arc welding method of and their applications.	
UNIT 5 Electric Traction:	[CO5]	[6 Hrs]
System of electric traction and track electrif	cation. Methods of electric braking - plugging, rheostatic braking and	
regenerative braking. Mechanics of train m	ovement. Speed-time curves for different services - trapezoidal and	
quadrilateral speed time curves. Effect of vary	ng acceleration and braking retardation.	

S. No.	Title	Author(s)	Publisher
1	Utilization of Electrical Energy	E. Opens haw Taylor	University Press
2	Art & Science of Utilization of Electrical Energy	H. Partab	Pritam Surat & Sons.

S.No.	Title	Author(s)	Publisher
1	Utilization of Electrical Power and Electric Traction	J.B. Gupta	S.K.Kataria & Sons
2	Utilization of Electrical Power and Electric Traction	G. C .Garg	Khanna Publishers

Subject Code	EE104822	L = 2	T = 1	P = 2	Credits = 3
Subject	Power System Dynamics	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	30	150	3 Hrs

Course Objectives	Course Outcomes			
The objective of the course to:	Students will be able to:			
1. This course provides an introduction to the CO1: To understand the operating principles and models of machine CO2: To acquaint with the different types of synchronous machine modelling				
2. This course deals with the fundamentals of synchronous machines and their modelling. CO3: To study the basic principles of excitation system. CO4: Design and develop multimachine systems with constant impeda				
3. This course provides knowledge on excitation system and multimachine systems.	load.			
UNIT 1 Elementary Mathematical Model:	I	[8 Hrs]		
Swing Equation , Units , Mechanical Torque , Electri Natural Frequencies of Oscillation of a Synchronous M Classical Model , Equal Area Criterion , Classical Mo	cal Torque, PowerAngle Curve of a Synchronous Machine, Machine, System of One Machine against an Infinite Bus-The odel of a Multimachine System, Classical Stability Study of a			
Nine-Bus System, Shortcomings of the Classical Model	, Block Diagram of One Machine.			
UNIT 2Synchronous Machine: Park's Transformation, Flux Linkage Equations, Voltage Equations, Formulation of State - Space Equations, Current Formula tion, Per Unit Conversion, Normalizing the Voltage Equations, Normalizing the Torque Equations, Torque and Power, Equivalent Circuit of a Synchronous Machine, The Flux Linkage State-Space Model, Loaf				
Equations, Sub transferit and Transferit inductances and Time Constants, Turbine Generator Dynamic Moders				
UNIT-3 Simulation of Synchronous Machine: Steady-State Equations and Phasor Diagrams, Machine Connected to an Infinite Bus through a Transmission Line, Machine Connected to an Infinite Bus with Local Load at Machine Terminal, Determining Steady- State Conditions, Initial Conditions for a Multimachine System, Determination of Machine Parameters from Manufacturers' Data, Analog Computer Simulation of the Synchronous Machine, Digital Simulation of Syn chronous Machines. Linear Model of Synchronous Machine: Linearization of the Generator State -Space Current Model, Linearization of the Load Equation for the One-Machine Problem, Linearization of the Flux Linkage Model, Simplified Linear Model, Block Diagrams, State-Space Representation of Simplified Model.				
UNIT-4 Excitation Systems:		[8 Hrs]		
Simplified View of Excitation Control, Control Confi System Definitions, Voltage Regulator, Exciter Buildu Excitation System, State Space Representation of the E Typical Systems Constants, The effect of Excitation on	gurations, Typical Excitation Configurations, Excitation Control p, Excitation System response, State – Space Description of the xcitation system, Computer Representation of Excitation Systems, Generator Performance.			
Effect of Excitation on Stability: Effect of Excitation on Generator Power limits, Effect of the Excitation System on Transient Stability, Effect of Excitation on Dynamic Stability, Root – Locus Analysis of a Regulated Machine Connected to an Infinite Bus, Approximate System Representation, Supplementary Stabilizing Signals, Liner Analysis of the Stabilized Generator. General Comments on the Effect of Excitation on Stability.				
UNIT-5 Multimachine Systems with Constant Imped	lance Load:	[6 Hrs]		
Statement of the Problem, Matrix representation of a Passive Network, Converting Machine Coordinates to System				
Reference, Relation Between Machine Currents & Voltages, System Order, Machines Represented by Classical				
Methods, Linearized Model for the Network, Hybrid F System Equation, Multimachine System Study.	ormulation, Network Equation with Flux Linkage Model, Total			

S. No.	Title	Author(s)	Publisher
1	Power System Control and Stability	P. M. Anderson & A. A. Fouad	
2	Power System Stability and Control	Prabha Kundur- EPRI.	Mc Graw Hill Inc.

Subject Code	EE104823	L = 2	T = 1	P = 2	Credits = 3
Subject	Computer Aided Power System	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	30	150	3 Hrs

Course Objectives	Course Outcomes			
The objective of the course to:	Students will be able to:			
To introduce computer applications in the analysis of power systems.	To introduce computer applications in the analysis CO1: The students will gain the ability to critically analyse the methods used in power system studies.			
To understand the solution methods and techniques used in power system studies.				
UNIT 1		[8 Hrs]		
Overview of Graph theory -tree, co-tree and incidence matrix, Development of network matrices from Graph theoretic approach. Review of solution of Linear System of equations by Gauss Jordan method, Gauss elimination, LDU factorization				
UNIT 2		[8 Hrs]		
Bus Reference Frame: Injections and Loads. Zbus ar	d Y bus. Formulation of Bus Impedance matrix for elements			
without Mutual Coupling.				
UNIT-3				
Inversion of YBUS for large systems using LDU factor	rs, Tinney's Optimal ordering. Review of Gauss-Seidel Iteration			
using YBUS, Newton-Raphson method, Fast Decoupled	Load Flow (FDLF) DC load flow, Three-phase Load Flow			
UNIT-4		[8 Hrs]		
Adjustment of network operating conditions, Optimal p	ower flow: concepts, active/reactive power objectives (Economic			
dispatch, MW and MVAr loss minimization) - applications- security constrained optimal power flow				
UNIT-5		[6 Hrs]		
State Network fault calculations using ZBUS and YBUS Table of Factors, Algorithm for calculating system conditions				
after fault - three phase short circuit, three phase to ground, double line to ground, line to line and single line to ground				
fault.				
Contingency analysis in Power systems : Contingency	Calculations using ZBUS and YBUS Table of Factors. State			
estimation - least square and weighted least square estin	nation methods for linear systems.			

S. No.	Title	Author(s)	Publisher
1	Power Systems Analysis	Arthur R. Bergen, Vijay Vittal	Pearson Higher Education
2	Computer Aided Power System Analysis	G.L.Kusic	PHI
2	Power System Analysis	John J. Grainger, William D.	Tata McGraw-Hill Series in Electrical
3		Stevenson, Jr	and Computer Engineering

S. No.	Title	Author(s)	Publisher
1	Modern Power System Analysis	I. J. Nagrath and D.P.Kothari	Tata McGraw Hill
2	Computer modelling of Electrical power systems	J. Arriliga and N.R. Watson	John Wiley
3	Advanced Power System Analysis and Dynamics	LP. Singh	New Age Intl

Subject Code	EE104824	L = 2	T = 1	P = 2	Credits = 3
Subject	VLSI Design	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	30	150	3 Hrs

Course Objectives	Course Outcomes			
The objective of the course to:	Students will be able to:			
1. This course provides an introduction to logic	1. This course provides an introduction to logic CO1: An ability to design logic circuit layouts for both static CMOS as			
circuit layouts for both static CMOS and dynamic	circuit layouts for both static CMOS and dynamic dynamic clocked CMOS circuits.			
clocked CMOS circuits, analog parasitic elements	CO2: An ability to extract the analog parasitic elements from the	e layout and		
from the layout and analyze the circuit timing using	analyze the circuit timing using a logic simulator and an analog sir	nulator.		
a logic simulator and an analog simulator	CO3: An ability to build a cell library to be used by other chip des	signers.		
2. This source provides build a call library to be	CO4: An ability to insert elementary testing hardware into the VL	SI chip.		
2. This course provides build a cell library to be used by other chip designers ith elementary testing	CO5: An ability to analyze VLSI circuit timing using Logical Effo	ort analysis		
hardware into the VLSI chin.	CO6: An ability to design elementary data naths for micro	oprocessors		
······································	including moderate-speed adders, subtracters, and multipliers.	oprocessors,		
UNIT 1 Introduction to MOS Transistor		[8 Hrs]		
MOS Transistor, CMOS logic, Inverter, Pass Transistor, Transmission gate, Layout Design Rules, Gate Layouts, Stick				
Diagrams, Long-Channel I-V Charters tics, C-V Charters tics, Non ideal I-V Effects, DC Transfer characteristics, RC				
Delay Model, Elmore Delay, Linear Delay Model, Logical effort, Parasitic Delay, Delay in Logic Gate, Scaling.				
UNIT 2 Combinational MOS Logic Circuits [8				
Circuit Families: Static CMOS, Ratioed Circuits, Cascod	e Voltage Switch Logic, Dynamic Circuits, Pass Transistor Logic,			
Transmission Gates, Domino, Dual Rail Domino, CPL, I	OCVSPG, DPL, Circuit Pitfalls. Power: Dynamic Power, Static			
Power, Low Power Architecture.				
UNIT 3 Sequential Circuit Design		[6 Hrs]		
Static latenes and Registers, Dynamic latenes and Register	ers, Pulse Registers, Sense Amplifier Based Register, Pipelining,			
Schmitt Ingger, Monostable Sequential Circuits, Astable	Symphronous Design			
UNIT IV Design of Arithmetic Puilding Pleaks and S	, Synchronous Design.	[9 U nc]		
UNIT IV Design of Arithmetic Building Blocks and Subsystem				
Design as a tradeoff Designing Memory and Array structures: Memory Architectures and Building Blocks. Memory				
Core, Memory Peripheral Circuitry.				
UNIT V Implementation Strategies and Testing				
FPGA Building Block Architectures, FPGA Interconnect	t Routing Procedures. Design for Testability: Ad Hoc Testing,			
Scan Design, BIST, IDDQ Testing, Design for Manufact	urability, Boundary Scan.			

S. No.	Title	Author(s)	Publisher
1	Numerical Methods for Scientific and Engineering Computation	M.K Jain, S.R.K Iyengar and R.KJain	New Age Pvt. Pub
2	Linear Algebra and its Applications	G. Strang	Cengage LearningPvt Ltd
3	An Introduction to Optimization	E. K. P. Chong and S. H. Zak	Wiley India Pvt. Ltd

S. No.	Title	Author(s)	Publisher
1	Applied Numerical Analysis	C.F Gerald and P. O Wheatly	Wesley
2	Linear Algebra	K Hoffman and R. Kunze	Pearson Education

Subject Code	EE104825	L = 2	T = 1	P = 2	Credits = 3
Subject	Artificial Neural Network and Fuzzy Logic	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	30	150	3 Hrs

Course Objectives	Course Outcomes			
The objective of the course to:	After learning the course the students should be able to:			
1. This course provides concept of fuzziness	1. This course provides concept of fuzziness CO1: Apply the concept of fuzziness involved in various systems.			
involved in various systems, fuzzy set theory CO2: Apply the knowledge of fuzzy set theory.				
2. This course provides fuzzy logic control and adaptive fuzzy logic and using algorithms, fuzzy logic control to real time systems. CO3: Design fuzzy logic control and adaptive fuzzy logic algorithms. CO4: Apply knowledge of application of fuzzy logic control to systems.				
Unit 1: Introduction to classical sets – properties, Ope	erations and relations:	[8 Hrs]		
Fuzzy sets, Membership, Uncertainty, Operations, properties, fuzzy relations, cardinalities, membership functions.Fuzzy Logic System Components: Fuzzification, Membership value assignment, development of rule base and decision making system, Defuzzification to crisp sets, Defuzzification methods. Fuzzy logic applications: Fuzzy logic control and Fuzzy classification				
Unit 2: Introduction to Neural Networks:				
Humans and Computers, Organization of the Brain, Biological Neuron, Biological and Artificial Neuron Models, Hodgkin-				
Huxley Neuron Model, Integrate-and-Fire Neuron Model	, Spiking Neuron Model, Characteristics of ANN, McCulloch-			
Pitts Model, Historical Developments, Potential Applicat	ions of ANN.			
Unit 3: Essentials of Artificial Neural Networks:		[6 Hrs]		
Artificial Neuron Model, Operations of Artificial Neuron	, Types of Neuron Activation Function, ANN Architectures,			
Classification Taxonomy of ANN – Connectivity, Neural	Dynamics (Activation and Synaptic), Learning Strategy			
(Supervised, Unsupervised, Reinforcement), Learning Ru	Supervised, Unsupervised, Reinforcement), Learning Rules, Types of Application.			
Unit 4 : Single Layer Feed Forward Neural Networks : [8 Hrs]				
ntroduction, Perceptron Models: Discrete, Continuous and Multi-Category, Training Algorithms: Discrete and Continuous				
'erceptron Networks, Perceptron Convergence theorem, Limitations of the Perceptron Model, Applications. Multilayer				
ed torward Neural Networks: Credit Assignment Problem, Generalized Delta Rule, Derivation of Backpropagation (BP)				
raining, Summary of Backpropagation Algorithm, Kolmogorov Theorem, Learning Difficulties and Improvements.				
Unit 5 : Architecture of Hopfield Network:	anither Stability Analysis Consists of the Hanfield Net of the	[6 Hrs]		
Discrete and Continuous versions, Storage and Recall Al	gorithm, Stability Analysis, Capacity of the Hopfield Network			
Neural network applications: Process identification, conti	roi, fault diagnosis and load forecasting.			

S. No.	Title	Author(s)	Publisher
1	Neural Networks	James A Freeman and Davis Skapura	Pearson Education
2	Neural Networks	Simon Hakins	Pearson Education

S. No.	Title	Author(s)	Publisher
1	Neural Engineering	C. Eliasmith and C. H. Anderson	Wesley

Subject Code	EE100841	L = 2	T = 1	P = 0	Credits = 3
Subject	Energy Auditing and Management	СТ	TA	Total	ESE Duration
Evaluation Scheme	100	20	30	150	3 Hours

Course Objectives	Course Outcomes
1. Familiarizing with management especially with manag	ement in After successful completion of this course, student will be able
 Fundamentals of product strategy management. 	CO1: Understanding basics of demand side management and
 Studying methods of energy accounting and energy aud energy sector, industry and final consumption. 	liting in mechanisms (technical, legal or financial) that influences energy consumption.
4. Finding opportunities to increase the rational use of end	ergy. CO2: Recognizing opportunities for increasing rational use of
	energy. CO3 :Learning the basics of energy auditing with application on different sectors.

[8 Hrs]
[8 Hrs]
[8Hrs]
[6 Hrs]
[6 Hrs]

S. No.	Title	Authors	Edition	Publisher
1.	Energy Demand: Analysis, Management and Conservation	Ashok.V.Desai	2006	Wiley Eastern Ltd, New Delhi
2.	Energy technology	S. Rao, Parulekar	2013	Khanna Pbs.

S. No.	Title	Authors	Edition	Publisher
1.	Demand Side Management	Jyothi Prakash,	1998	Tata McGraw-Hill Publishers.
2.	Renewable Energy Sources and Conservation Technology	N.K.Bansal, Kleeman Millin		Tata McGraw-Hill Publishers

Subject Code	EE100842	L = 2	T = 1	P = 0	Credits = 3
Subject	Power System Planning and Management	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	30	150	3 Hours

Course Objectives	Course Outcomes
 Familiarizing components of power system planning, planning methodology for optimum power system expansion, various types of generation, transmission and distribution. Fundamentals of knowledge of forecasting of future load requirements of both demand and energy by deterministic and statistical techniques using forecasting tools. Studying methods of economic appraisal to allocate the resources efficiently and appreciate the investment decisions. 	After successful completion of this course, student will be able to: CO1: Discuss primary components of power system planning, planning methodology for optimum power system expansion, various types of generation, transmission and distribution. CO2: Show knowledge of forecasting of future load requirements of both demand and energy by deterministic and statistical techniques using forecasting tools. CO3: Discuss methods to mobilize resources to meet the investment requirement for the power sector. CO4: Understand economic appraisal to allocate the resources efficiently and appreciate the investment decisions. CO5: Discuss expansion of power generation and planning for system energy in the country, evaluation of operating states of transmission system, their associated contingencies and the stability of the system

_				
Γ	UNIT	1:	Power	System:

UNIT 1: Power System:	[8 Hrs]
Power Systems, Planning Principles, Planning Process, Project Planning, Power Development, Power Growth, National	
and Regional Planning, Enterprise Resources Planning, Structure of a Power System, Power Resources, Planning Tools,	
Power Planning Organisation, Regulation, Scenario Planning.	
Electricity Forecasting: Load Requirement, System Load, Electricity Forecasting, Forecasting Techniques, Forecasting	
Modelling, Spatial – Load Forecasting, Peak Load - Forecast, Reactive – Load Forecast, Unloading of a System.	
UNIT 2: Power-System Economics:	[8 Hrs]
Financial Planning, Techno - Economic Viability, Private Participation, Financial Analysis, Economic Analysis,	
Economic Characteristics - Generation Units, Transmission, Rural Electrification Investment, Total System Analysis,	
Credit - Risk Assessment, Optimum Investment, Tariffs.	
Generation Expansion: Generation Capacity and Energy, Generation Mix, Conventional Generation Resources,	
Nuclear Energy, Clean Coal Technologies.	
UNIT 3: Generation Expansion (continued):	[8Hrs]
Distributed Power Generation, Renovation and Modernisation of Power Plants.	
Transmission Planning: Transmission Planning Criteria, Right – of – Way, Network Studies, High – Voltage	
Transmission, Conductors, Sub – Stations, Power Grid, Reactive Power Planning, Energy Storage.	
UNIT 4: Distribution:	[6 Hrs]
Distribution Deregulation, Planning Principles, Electricity – Supply Rules, Criteria and Standards, Sub – Transmission,	
Basic Network, Low Voltage Direct Current Electricity, Distribution(continued): Upgradation of Existing Lines and Sub	
- Stations, Network Development, System Studies, Urban Distribution, Rural Electrification, Villages Self – Sufficiency	
in Energy, Community Power, Self – Generation.	
Reliability and Quality:Reliability Models, System Reliability, Reliability and Quality Planning, Functional Zones,	
Generation Reliability Planning Criteria, Transmission Reliability Criteria, Distribution Reliability, Reliability	
Evaluation, Grid Renability, Renability Target, Security Requirement, Disaster Management, Quanty of Supply,	
Reliability and Quality Roadmap.	
Evaluation, Grid Reliability, Reliability Target, Security Requirement, Disaster Management, Quanty of Supply, Reliability and Quality Roadmap. UNIT 5 : Demand-Side Planning:	[6 Hrs]
Evaluation, Orid Renability, Renability Target, Security Requirement, Disaster Management, Quanty of Supply, Reliability and Quality Roadmap. UNIT 5 : Demand-Side Planning: Demand Response, Demand – Response Programmes, Demand– Response Technologies, Energy Efficiency, Energy -	[6 Hrs]
 Evaluation, Grid Renability, Renability Target, Security Requirement, Disaster Management, Quanty of Supply, Reliability and Quality Roadmap. UNIT 5 : Demand-Side Planning: Demand Response, Demand – Response Programmes, Demand– Response Technologies, Energy Efficiency, Energy - Economical Products, Efficient – Energy Users, Supply – Side Efficiency, Energy Audit. 	[6 Hrs]
 Evaluation, Grid Renability, Renability Target, Security Requirement, Disaster Management, Quanty of Supply, Reliability and Quality Roadmap. UNIT 5 : Demand-Side Planning: Demand Response, Demand – Response Programmes, Demand– Response Technologies, Energy Efficiency, Energy - Economical Products, Efficient – Energy Users, Supply – Side Efficiency, Energy Audit. Electricity Market: Market Principles, Power Pool, Independent System Operator, Distribution Syste	[6 Hrs]
 Evaluation, Grid Renability, Renability Target, Security Requirement, Disaster Management, Quanty of Supply, Reliability and Quality Roadmap. UNIT 5 : Demand-Side Planning: Demand Response, Demand – Response Programmes, Demand– Response Technologies, Energy Efficiency, Energy - Economical Products, Efficient – Energy Users, Supply – Side Efficiency, Energy Audit. Electricity Market: Market Principles, Power Pool, Independent System Operator, Distribution System Operator, Power Balancing, Market Participants, Power Markets, Market Rules, Bidding, Trading, Settlement System, Locational Market Participant, Power Balancing, Market Participants, Power Markets, Market Rules, Bidding, Trading, Settlement System, Locational Market Participants, Power Markets, Market Rules, Bidding, Trading, Settlement System, Locational Market Participants, Power Markets, Market Rules, Bidding, Trading, Settlement System, Locational Market Participants, Power Markets, Market Rules, Bidding, Trading, Settlement System, Locational Market Participants, Power Markets, Market Rules, Bidding, Trading, Settlement System, Locational Market Participants, Power Markets, Market Rules, Bidding, Trading, Settlement System, Locational Market Participants, Power Markets, Market Rules, Bidding, Trading, Settlement System, Locational Market Participants, Power Participant, Participants, Power Participants, Power Participants, Power	[6 Hrs]
 Evaluation, Grid Renability, Renability Target, Security Requirement, Disaster Management, Quanty of Supply, Reliability and Quality Roadmap. UNIT 5 : Demand-Side Planning: Demand Response, Demand – Response Programmes, Demand– Response Technologies, Energy Efficiency, Energy - Economical Products, Efficient – Energy Users, Supply – Side Efficiency, Energy Audit. Electricity Market: Market Principles, Power Pool, Independent System Operator, Distribution System Operator, Power Balancing, Market Participants, Power Markets, Market Rules, Bidding, Trading, Settlement System, Locational Marginal Pricing, Transmission Charges, Merchant Power, Differential Electricity, Congestion Management, Ancillary Settlement System 	[6 Hrs]

S. No.	Title	Authors	Edition	Publisher
1.	Electric Power Planning	A. S. Pabla	2006	McGraw Hill, 2nd Edition
2.	Power System Planning Technologies and Applications: Concepts, Solutions and Management	Elkarmi, Fawwaz, AbuShikhah	2013	Khanna Pbs.

Subject Code	EE104891	$\mathbf{L} = 0$	T = 0	P = 2	Credits = 1
Subject	High Voltage Engineering Lab	СТ	ТА	Total	ESE Duration
Evaluation Scheme	50	25	25	50	

COURSE OBJECTIVES	COURSE OUTCOMES
5. To get a fair knowledge about the generation and measurement of high voltages	Students will be able to:- CO1: Describe the principles behind generating high DC – AC and impulse
and currents.6. Understand the concept of solid, liquid and gaseous dielectrics	voltages. CO2: Develop equivalent circuit models of the different high voltage generators.
7. Determining economic sharing of generations for a given loading condition.8. Gain knowledge in testing of high voltage	CO3: Perform a dynamic response analysis of high voltage measurement systems. CO4: Compute the breakdown strength of gas, liquids and solids insulation systems
equipments.	CO5: Evaluate Insulation life and accelerated tests.

List of experiments: (Minimum 10 experiments to be performed)

- 1. To study the heating time constant for a Continuous Duty Motor
- 2. To Study the heating time constant of a Short time Duty Motor
- 3. To Study the cooling time constant of a Short time Duty Motor
- 4. To Study the heating time constant of a Short Time Duty Motor
- 5. To Study the cooling time constant for an Intermittent Duty Motor
- 6. Performance and speed control of D.C drive using 3-phase full converter
- 7. Performance and operation of a four quadrant chopper on D.C drive
- 8. Study and performance of electrical Dynamic braking and Plugging of D.C shunt motor
- 9. Study of V/F control operation of 3-¢ Induction motor
- 10. Simulation of PWM VSI/CSI fed 3-φ Induction motor control using MATLAB/PSPICE/PSIM software.
- 11. Study of solid state stator voltage control of 3-¢ Induction motor (using AC voltageregulator)
- 12. Performance and speed control of 3- Induction motor using 3- voltage source inverter
- 13. To study frequency control Synchronous motor drive 14. Study of AC motors for 25KV Ac traction
- 14. Study of Resistance wielding and Arc welding Apparatus.

Required

- 1. AC motor speed control trainer
- 2. DC motor speed control trainer
- 3. Heating cooling time constant unit
- 4. V/f control of Induction motor

Subject Code	EE104892	L = 2	T = 1	P = 2	Credits = 3
Subject	Utilization of Electrical Energy Lab	СТ	ТА	Total	ESE Duration
Evaluation Scheme	50	25	25	50	

Course Objectives	Course Outcomes		
The objective of the course to:	Students will be able to:		
1. This course provides an introduction to the	CO1: To understand the operating principles and characteristics of traction motors		
principles of electrical drives and their applications. 2. This course deals with the fundamentals of illumination and its classification	with respect to speed, temperature, loading condition.		
	CO2: To acquaint with the different types of heating techniques.		
	CO3: To study the basic principles of illumination and its measurement.		
3 This course provides knowledge on	CO4: Design and develop smart electrical heating and welding systems through the		
electrical traction systems.	use of modern Electrical Engineering		
	CO5: To understand the method of calculation of various traction system for braking,		
	acceleration and other related parameters, including demand side management.		

List of Experiments

- 1. Measurement of Transformer Turns Ratio.
- 2. Power factor improvement of a single-phase load using capacitor bank
- 3. Perform dynamic braking of DC motor using MATLAB simulation
- 4. Testing of Dielectric Strength of Transformer Oil.
- 5. Installation, Maintenance and Testing of HPMV/ Sodium Vapour/ Metal Halide Lamp.
- 6. Identify the different components required for various types heating furnaces.
- 7. Identify the different accessories and safety devices required for various types of welding system.
- 8. Prepare Energy Bill based on energy consumption of residence/ Institute
- 9. Prepare a report /chart on various types of traction systems.
- 10. Verify the Inverse Square Law of illumination and compare the luminance of different types of luminous bodies
- 11. Study of an electric locomotive by visiting any railway repair shop at a nearby station
- 12. Study of different types of sources of light and make connections, and to measure intensity of light with luxmeter