

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) Courses of Study and Scheme of Examination of M. Tech

Courses of Study and Scheme of Examination of M. Tech

SCHEME OF EXAMINATION AND SYLLABUS

M-Tech. 2nd Semester Civil Engineering (Specialization in Geotechnical Engineering)

c	Poord of			Per	Periods per Example 2 So Week 2		Scheme of Examination		Total		
S. No.	Study	Subject Code	Subject				T Pi	Theory / Practical		Marks	Credit L+(T+P)/2
				L	Т	Р	ESE	СТ	ТА		
1	Civil Engg.	CE223201	Geosynthetics and Reinforced Earth	3	1	0	100	20	20	140	4
2	Civil Engg.	CE223202	Soil Structure Interaction	3	1	0	100	20	20	140	4
3	Civil Engg.	CE223203	Soil Improvement Techniques	3	1	0	100	20	20	140	4
4	Civil Engg.	CE223204	Soil Dynamic & Machine Foundation	3	1	0	100	20	20	140	4
5	Refer	Table- I	Elective-I	3	1	0	100	20	20	140	4
6	Civil Engg.	CE223291	Advanced Geotechnical Lab			3	75		75	150	2
7	Civil Engg.	CE223292	Geotech Field Testing- II Lab			3	75		75	150	2
	Total		15	05	6	650	100	250	1000	24	

L-Lecture	T-Tutorial
P-Practical,	ESE- End Semester Exam
CT-ClassTest	TA- Teacher's Assessment

Table-I

	ELECTIVE- I							
S.No.	Board of Study	Subject Code	Subject					
1	Civil Engg. CE223221		Measurement Techniques in Geotechnical Engineering					
2	Civil Engg.	CE223222	Tunnel Engineering					
3	Civil Engg.	CE223223	Environmental Geotechnology					
4	Civil Engg.	CE223224	Foundation in Difficult Sub Soil					

Note(1)- 1/4th of total strength of students subject to minimum of twenty students is required to offer an elective in the college in a Particular academic session.

		October 2020	1.00	Applicable for AY 2020-21
Chairman (AC)	Chairman (BoS)	Date of Release	Version	Unwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

Courses of Study and Scheme of Examination of M. Tech

SCHEME OF EXAMINATION AND SYLLABUS

M-Tech. 2nd Semester Civil Engineering (Specialization in Geotechnical Engineering)

Note(2	Choice of ele	ctive course once made for an ex	irse once made for an examination cannot be changed in futureexaminations.				
	Subject Code	Geosynthetics and Reinforced Earth	L = 3	T = 1	P = 0	Credits = 4	
CE222201		ESE	СТ	TA	Total	ESE Duration	
	CE223201	100	20	20	140	3 Hours	

Course Objective	Course Outcomes
This course will enable students to1. Identify the soil suitable for reinforced earth.2. Identify the type of reinforcing material suitable for the project.3. Design the reinforced earth.	After studying this course, students will be able to:1 Design and incorporate the reinforced earth for the sites at weak soil sites.2: Design the pavements, embankments using reinforced earth to enhance the engineering properties of the soils

UNIT- I

Reinforced Earth : Histroy, field of applications, natural fibers, overview of Geotexiles, Geomembranes, Geogrids, Geonets, Geowebs Geomats and Geo-composites, economic aspects of their applications. [8Hrs]

UNIT – II

Production ofGeotextiles, comoposites, physical-mechanical, hydraulicand chemical properties. Functions of Geosynthetics, fluid transmission, filtration, separation, protection. [8Hrs]

UNIT – III

Soil reinforcement : Basic principle of soil reinforcement, shear strength of reinforced soil, theoretical strength models, factors affecting requirements on synthetic reinforcement, installation techniques

[8Hrs]

UNIT – IV

circulation methods : Basic concepts, embankment on soft soils, internal stability, overall stability, foundation stability and bearing capacity. Failures. Construction of the steep slope, retaining walls-external stability, internal stability. [8Hrs]

UNIT – V

Use of Geo-synthetics in Roads and railways, drainage systems- control of groundwater level, dewatering and reclamation of land, use of Geo-membranes for lining applications, management and maintenance. [8Hrs]

		October 2020	1.00	Applicable for AY 2020-21
Chairman (AC)	Chairman (BoS)	Date of Release	Version	Onwards

CO2

CO2

CO1 iles.

CO1

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

Courses of Study and Scheme of Examination of M. Tech

SCHEME OF EXAMINATION AND SYLLABUS

M-Tech. 2nd Semester Civil Engineering (Specialization in Geotechnical Engineering)

Subject Code	Geosynthetics and Reinforced Earth	L = 3	T = 1	P = 0	Credits = 4
CE222201	ESE	СТ	ТА	Total	ESE Duration
CE225201	100	20	20	140	3 Hours

Text Books:

S.No.	Title	Authors	Edition	Publisher
1	Geo-textiles and GeGmembranes in Civil Engg	Gerard P.T.M. Van Santvro A,A. Balkema	Third	Oxford and tBH publishing company, New Delhi
2	Reinforced Soil and Geo- textiles.	J.N. Mandal	second	Oxford and tBH publishing company provate Ltd, New Delhi

S.No.	Title	Authors	Edition	Publisher
1	Soil Reinforcement with Geotextiles	Jewel R A (1996)	Tenth	CIRIA
2	Reinforcements and Soil Structures	Jones, CJEP (1996)	fourth	Butterworth Publications

		October 2020	1.00	Applicable for AY 2020-21
Chairman (AC)	Chairman (BoS)	Date of Release	Version	Onwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

Courses of Study and Scheme of Examination of M. Tech

SCHEME OF EXAMINATION AND SYLLABUS

M-Tech. 2nd Semester Civil Engineering (Specialization in Geotechnical Engineering)

Subject Code CE223202	SOIL STRUCTURE INTERACTION	L = 3	T = 1	P = 0	Credits =4
Evaluation Scheme	ESE	СТ	ТА	Total	ESE Duration
	100	20	20	140	3 Hours

Course Objective	Course Outcomes
 This course will enable students to 1. The knowledge about another types of foundation like well and pile foundation and their design criterion. 2. Know about problems associated with expansive soils and contaminated soils and their remedial measures. 3. Make students understand soil structure. 	 After studying this course, students will be able to: 1 To know different types of foundations, their general requirements and loads imposed. 2: To learn the analysis of conventional footings. 3: To analyze the behavior of pile foundations, transmission towers and water front structures. 4: To learn various techniques of soil-structure interaction analysis.

UNIT I:

Review of conventional methods of foundation design, Nature and complexity of soil structure interaction, selection and use of field and lab data for foundation design. Selection and suitability of foundation type. [8]

UNIT-II:

Design of isolated and combined footing foundation. Proportioning of footing for equal settlements. Study of code of practice for design of isolated and combined footing. Numerical related to field data for design practice. [8Hrs]

UNIT-III:

Design of raft foundation, General considerations and various methods of design of raft foundations. Floating foundations . Analysis and design of floating foundations. Suitability of floating foundations . [8Hrs]

UNIT-IV:

CO4

CO3

Deep foundation and its selection criteria based on soil properties. Design of pile foundation. Group pile design and its suitability. Instrumental set up and data analysis of pile load test. [8Hrs]

		October 2020	1.00	Applicable for AY 2020-21
Chairman (AC)	Chairman (BoS)	Date of Release	Version	Unwards

CO1

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) Courses of Study and Scheme of Examination of M. Tech

SCHEME OF EXAMINATION AND SYLLABUS

M-Tech. 2nd Semester Civil Engineering (Specialization in Geotechnical Engineering)

UNIT-V:

CO4

Foundation in expansive soil. Typical terrain and selection criteria based on various soil parameters. Study of settlement behavior of foundation in black-cotton soil. Case studies to learn through real examples. [5Hrs]

S.No.	Title	Authors	Edition	Publisher
1	Soil-Structure Interaction	A. S. Cakmak	Third	Elsevier Scientific, Amsterdam
2	Soil-Structure Interaction.	J.W. Bull	second	CRC Press
3				

S. No.	Title	Authors	Edition	Publisher
1	Analytical and Computer Methods in Foundation	Bowels J.E	Tenth	McGraw Hill Book Co., New York, 1974
2	Soil Mechanics and Foundation Engineering	S K Garg	fourth	Khanna Publishers
3				

		October 2020	1.00	Applicable for AY 2020-21
Chairman (AC)	Chairman (BoS)	Date of Release	Version	Onwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

Courses of Study and Scheme of Examination of M. Tech

SCHEME OF EXAMINATION AND SYLLABUS

M-Tech. 2nd Semester Civil Engineering (Specialization in Geotechnical Engineering)

Subject Code CE223203	Soil Improvement Techniques	L = 3	T = 1	P = 0	Credits = 4
Evoluction Schome	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

Course Objective	Course Outcomes		
To impart knowledge about the various ground improvement techniques. To enable the students to understand the factors that controls the choice of ground improvement tec hnique as per the field condition.	 On successful completion of the course, the student will be able to: CO1:- Student will be able to understand the basic mechanics of the various ground improvement techniques. CO2:- Apply the appropriate ground improvement technique to the field situation. CO3:- Know about the problems associated with weak soil deposits. CO4:- To know about the in situ compaction and soil improvement techniques. CO5:- To know about the stone column, vibrofloatation and their applications. 		

UNIT I

Types of Soil Structure - Clay Minerals - Characteristics and Construction of mineral groups -

soil water.

UNIT-II

[5Hrs]

CO2

CO1

Definitions – Principles – Objectives – Field compaction methods – suitability of field compaction methods – field compaction controls – methods [4Hrs]

UNIT – III

CO3

CO4

Weak Deposits- Identification-Problems associated with weak deposits- Mitchel chart of Applicability of treatment methods. [5Hrs]

UNIT – IV

Insitu compaction of cohesion less soil – Injection and grouting – stabilization of soils – Preloading and sand drains, Prefabricated vertical drain, Earth reinforcement, Geosynthesics, Mechanical stabilized earth wall [5Hrs]

		October 2020	1.00	Applicable for AY 2020-21
Chairman (AC)	Chairman (BoS)	Date of Release	Version	Unwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) Courses of Study and Scheme of Examination of M. Tech

SCHEME OF EXAMINATION AND SYLLABUS

M-Tech. 2nd Semester Civil Engineering (Specialization in Geotechnical Engineering)

UNIT –V

CO5

Vibroflotation - Stone column – Encased stone column , Stone column design – strengthening of subsoil by stone column installation, Ground Water Control – Methods – Diaphragm techniques – well point system [5Hrs]

Text Books:

S.No.	Title	Authors	Edition	Publisher
1	Construction and Geotechnical Methods in Foundation Engineering	Koerner R M	Publishing Co. Ltd., 1984	McGraw Hill
2	Engineering Principles of Ground Modification	Hausmann M.R.	Company, New York - 1990	McGraw Hill Publishing

S. No.	Title	Authors	Edition	Publisher
1	Soil Improvement Technique and their Evolution	W.E. Van Impe	1st edition	CRC Press
2	Foundation Engineering for Difficult Subsoil Conditions	Zeevart L	2 nd Edition	Van NostrandRei nheld Co., Newyork, 1973.

		October 2020	1.00	Applicable for AY 2020-21
Chairman (AC)	Chairman (BoS)	Date of Release	Version	Unwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) Courses of Study and Scheme of Examination of M. Tech

SCHEME OF EXAMINATION AND SYLLABUS

M-Tech. 2nd Semester Civil Engineering (Specialization in Geotechnical Engineering)

Subject Code CE223204	GEODYNAMICS AND MACHINE FOUNDATIONS	L = 3	T = 1	P = 0	Credits =4
Evaluation	ESE	СТ	ТА	Total	ESE Duration
scheme	100	20	20	140	3 Hours

Course Objective	Course Outcomes
This course will enable students	
to 1. To study vibration concepts	
in soils like damping, wave	During this course, students will be trained :
propagation, resonance and	1 To develop a mechanism to design the foundations for
effect of modes of vibrations	resisting vibrations and achieve static equilibrium
 To study dynamic soil 	conditions of structures
properties.	2 To understand the classical geotechnical failures due to
Determination of dynamic	liquefaction and mitigate the same.
properties by field and	3 Design of foundations in large structures like power
laboratory tests	plants, other industrial buildings etc., for analysing the
 Effect of liquefaction and anti 	vibrating waves which can be isolated and measures for
liquefaction measures	achieving safety of the adjacent foundations
• To study vibration isolation,	
machine foundation design.	

UNIT I:

THEORY OF VIBRATIONS : Definitions; degree of freedom, damping, amplitude, period, natural frequency. Harmonic motion, free & forced vibrations of a single degree of freedom system, un damped and damped system. Logarithmic decrement, transmissibility. Vibrations of multiple degree of freedom systems. [8Hrs]

UNIT-II:

WAVE PROPAGATION & DYNAMIC SOIL PROPERTIES : Wave propagation in elastic infinite medium, wave propagation in elastic half space. Soil spring constants. Dynamic moduli, poission's ratio, field & laboratory techniques, cyclic shear test, cyclic plate load test, block vibration test, seismic refraction tests, high strain tests. [8Hrs]

UNIT-III:

MACHINE FOUNDATIONS: General Principles: Type of machine and foundations, modes of vibration of a rigid foundation block, general requirements, Permissible amplitude and allowable soil pressure General design criteria, ls codes [8Hrs]

		October 2020	1.00	Applicable for AY 2020-21
Chairman (AC)	Chairman (BoS)	Date of Release	Version	Unwards

CO1

CO1

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) Courses of Study and Scheme of Examination of M. Tech

SCHEME OF EXAMINATION AND SYLLABUS

M-Tech. 2nd Semester Civil Engineering (Specialization in Geotechnical Engineering)

UNIT-IV:

CO3

DESIGN OF MACHINE FOUNDATIONS : Foundations for impact type machine, design procedure for hammer foundations. Foundations for reciprocating & rotary type machines [8Hrs]

UNIT-V:

CO3

VIBRATION ISOLATION AND SCREENING. Force and motion isolation, screening of vibrations, materials for base isolation. [8Hrs]

S.No.	Title	Authors	Edition	Publisher
1	Soil Dynamics and Machine Foundations	Swamisaran (2010)	Third	Galgotia publications Pvt. Ltd. New Delhi
2	Dynamics of Bases and Foundations	Barken DD	second	Mc Graw Hill NewYork
3	Soil Dynamics	Prakash (1981)	seventh	S. McGraw Hill Book Company

S. No.	Title	Authors	Edition	Publisher	
1	Vibration Analysis and	Kameswara	Tonth	Wheeler Publication	
1	Foundation Dynamics(1998),	Rao, N. S. V	Tenun	Ltd	
2	Foundation for Machines	Prakash, S. and	fourth	John Wilov & Sons	
2	(1998).: Analysis and Design,	Puri, V. K	Iourth	John whey & Sons	
3					

		October 2020	1.00	Applicable for AY 2020-21
Chairman (AC)	Chairman (BoS)	Date of Release	Version	Unwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) Courses of Study and Scheme of Examination of M. Tech

Solution of Examination of M. Tech

SCHEME OF EXAMINATION AND SYLLABUS

M-Tech. 2nd Semester Civil Engineering (Specialization in Geotechnical Engineering)

Subject Code CE223221	Measurement Techniques in Geotechnical Engineering	L = 3	T = 1	P = 0	Credits = 4
Evaluation	ESE	СТ	TA	Total	ESE Duration
scheme	100	20	20	140	3 Hours

Course Objective	Course Outcomes
This course is designed to provide an introduction to dynamics with Soil Dynamics and Geotechnical Earthquake Engineering. The fundamental theoretical and computational aspects of dynamics are developed for important	 On successful completion of the programme the students will: 1. To knowthe theories of earth pressuremeasurements of ground movements . 2. To understand and analyses how and where different structures such as earth dams and to measure. 3. To understand and apply the theories of wave propagation in elastic media, evaluate dynamic properties of soil by various lab and field testing methods. 4. To perform ground response analysis and understand the local site effects. 5. To understand various earthquake induced hazards and different remedial measures (ground improvement methods).

Unit:I

CO1

CO2

CO3

Introduction -load measurements - pore water pressure measurements - earth pressure measurements - measurements of ground movements [8Hrs]

Unit:II

Instrumentation of different structures such as earth dams -foundations, retaining walls, rock slopes, their recording and processing. [8Hrs]

Unit:III

Consolidation test and its applications to settlement computations. [8Hrs]

		October 2020	1.00	Applicable for AY 2020-21
Chairman (AC)	Chairman (BoS)	Date of Release	Version	Unwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) Courses of Study and Scheme of Examination of M. Tech

SCHEME OF EXAMINATION AND SYLLABUS

M-Tech. 2nd Semester Civil Engineering (Specialization in Geotechnical Engineering)

Unit:IV

CO4

Shear test: triaxial shear test -pore pressure & volume change during shear -vane shear test measurements of A & B parameters. [5Hrs]

Unit:V

CO5

Techniques of field measurements of penetration resistance (Static /Dynamic) plate load test - resistivity of soil -compression and tensile tests on rock cores [8Hrs]

Text Books:

S.No.	Title	Authors	Edition	Publisher
1	"Foundation Instrumentation",	Hanna T H	Ninth	Trans Tech Publication, Ohio, 1985
2	Geotechnical Instrumentation for Monitoring Field Performance	Dunnicliff J &Gree G E,	Seventh	JohnWiley, 1988

S. No.	Title	Authors	Edition	Publisher
1	Soil Dynamics	SamsherPrakash	Seventh	CBS Publishers and Distributors
2	Soil Dynamics and machine foundation	Swamisaran,	Sixth	GalgotiaPub.Pvt Ltd New Delhi
3	Soil Dynamics and Earthquake Engineering	Bharat Bhusan Prasad	Sixth	PHI Learning Pvt. Ltd New Delhi

		October 2020	1.00	Applicable for AY 2020-21
Chairman (AC)	Chairman (BoS)	Date of Release	Version	Oliwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) Courses of Study and Scheme of Examination of M. Tech

SCHEME OF EXAMINATION AND SYLLABUS

M-Tech. 2nd Semester Civil Engineering (Specialization in Geotechnical Engineering)

Subject Code CE223222	TUNNEL ENGINEERING	L = 3	T = 1	$\mathbf{P} = 0$	Credits =4
Evaluation	ESE	СТ	ТА	Total	ESE Duration
scheme	100	20	20	140	3 Hours

Course Objective	Course Outcomes			
	On successful completion of the course, the student will be able to:			
Tunnel engineering deals with the fields of tunnel engineering ,geotechnical parameter, ground improvement, computer based design of tunnel and economy in design of tunnels	CO1:- To teach students about effects of Tunnel engineering			
	CO2:- To learn Tunnel alignment			
	CO3:- : To Study of various geotechnical parameters for deciding feasibility of tunnels			
	CO4:- explain the concepts Tunnel construction- construction in hard rock and soft ground			
	CO5:- to study Computer based design of tunnels			

UNIT I:

CO1

CO2 [5Hrs]

[5Hrs]

CO4

Definitions, different types of tunnels for different purposes, brief history of tunnels of world Shapes and sizes of tunnels for their purposes. [5Hrs]

UNIT- II:		
Tunnel alignment-	Transfer of center line on ground, various modern methods.	

UNIT-III:

CO3

Study of various geotechnical parameters for deciding feasibility of tunnels, Various ground improvement measures for tunnel construction like grouting, strengthening of rock, rock bolting.

UNIT-IV:

Tunnel construction-construction in hard rock and soft ground. Drilling, blasting, quarrying, subsidence and caving Percolation and dewatering during construction. Handling of unexpected. source of water, muck hauling, lighting and ventilation in tunnel [5Hrs]

		October 2020	1.00	Applicable for AY 2020-21
Chairman (AC)	Chairman (BoS)	Date of Release	Version	Unwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

Courses of Study and Scheme of Examination of M. Tech

SCHEME OF EXAMINATION AND SYLLABUS

M-Tech. 2nd Semester Civil Engineering (Specialization in Geotechnical Engineering) UNIT- V : CO5

Computer based design of tunnels, Economy in design of tunnels, tunnet ning routine and regular maintenance of tunnels for smooth running. [5Hrs]

S.No.	Title	Authors	Edition	Publisher
1	Tunnel Engineering	Subhash C.	fourth	Dhanpati Rai
1		Saxena	Tourun	Publication
	Harbour Dook and Tunnal			Charotar
2	Fraincering	R Srinivasan.	seventh	Publishing
	Engineering			House

S. No.	Title	Authors	Edition	Publisher
1	Railway Bridge And Tunnel Engineering	Rangawala	Tenth	Charotar Publishing House Pvt. Ltd.
2	Handbook of Tunnel Engineering: Volume I: Structures and Methods	Bernhard Maidl, Marku s Thewes, Ulric h Maidl	First Edition	Butterworth Publications
3				

		October 2020	1.00	Applicable for AY 2020-21
Chairman (AC)	Chairman (BoS)	Date of Release	Version	Unwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

Courses of Study and Scheme of Examination of M. Tech

SCHEME OF EXAMINATION AND SYLLABUS

M-Tech. 2nd Semester Civil Engineering (Specialization in Geotechnical Engineering)

Subject Code CE223223	Environmental Geotechnology	L = 3	T = 1	P = 0	Credits = 4
Evaluation	ESE	СТ	ТА	Total	ESE Duration
Scheme	100	20	20	140	3 Hours

Course Objective	Course Outcomes		
Environmental Geotechnology deals withthe fields of environmental management, site characterization, pile driving and control mechanisms, solid waste disposal, in order to meet the needs of a society.	On successful completion of the course, the student will be able to: CO1:-To teach students about effects of environment on foundation CO2:-To learn settlement of uncompact soil CO3:-To study hazardous waste management CO4:-explain the concepts pile driving CO5:- to study mechanisms of landslide		

UNIT-I

Sources and Site Characterization: Scope of Geoenvironmental Engineering, Various Sources of Contaminations, Need for contaminated site characterization; and Characterisation methods. [5Hrs]

UNIT-II

Solid and Hazardous Waste Management: Classification of waste, Characterisation of solid wastes, Environmental Concerns with waste, waste management strategies. [5Hrs]

UNIT-III

Contaminant Transport: Transport process, Mass-transfer process, Modeling, Bioremediation, Phytoremediation. [5Hrs]

UNIT-IV

Remediation Techniques: Objectives of site remediation, various active and passive methods, remediation of NAPL sites, Emerging Remediation Technologies. [5Hrs]

		October 2020	1.00	Applicable for AY 2020-21
Chairman (AC)	Chairman (BoS)	Date of Release	Version	Unwards

CO1

CO3

CO2

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) Courses of Study and Scheme of Examination of M. Tech

SCHEME OF EXAMINATION AND SYLLABUS

M-Tech. 2nd Semester Civil Engineering (Specialization in Geotechnical Engineering) UNIT-V CO5

Landfills: Types of landfills, Site Selection, Waste Containment Liners, Leachate collection system, Cover system, Gas collection system. [5Hrs]

Text Books:

S.No.	Title	Authors	Edition	Publisher
1	Geotechnology of Waste Management	Oweis I Sand Khera R P	1 st	Butterworth & Co.
2	Environmental Indices: Theory and Practice	Oft W R	1 st	United States: N. p., 1978. Web.

S. No.	Title	Authors	Edition	Publisher
1.	Geotechnical Engineering	Donald P. Coduto , Man- chu Ronald Yeung , Willia m A. Kitch	2 nd	Pearson Education India
2.	Principles of Geotechnical Engineering	Braja M. Das, Thomson.	-	Cengage Learning Custom Publishing

		October 2020	1.00	Applicable for AY 2020-21
Chairman (AC)	Chairman (BoS)	Date of Release	Version	Unwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

Courses of Study and Scheme of Examination of M. Tech

SCHEME OF EXAMINATION AND SYLLABUS

M-Tech. 2nd Semester Civil Engineering (Specialization in Geotechnical Engineering)

Subject Code CE223224	FOUNDATION IN DIFFICULT SUB SOIL	L = 3	T = 1	P = 0	Credits =4
	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

Course Objective	Course Outcomes				
	On successful completion of the course, the student will be				
The objective is to make the	able to:				
students to understand and	CO1:- to understand about the weak deposits of soil.				
conceptualize to plan and	CO2:- to study about ground improvement methods.				
execute sub-soil exploration	CO3:-to learn about Insitu densification of soils.				
programmes for different field	CO4:-to study about Stone columns methods.				
projects.	CO5:-to study about Geotechnical aspects of waste				
	management.				

UNIT-I

Weak Deposits- Identification-Problems associated with weak deposits- Mitchel chart of applicability of treatment methods. [5Hrs]

UNIT – II

Introduction role of ground improvement in foundation engineering - drainage techniques -well point vacuum and electronic methods. [8Hrs]

UNIT – III

Insitu densification of soils -dynamic compaction -blasting dynamic consolidation -preloading with sand drains. [8Hrs]

UNIT - IV

Stone columns methods of installation vibro-flotation technique -grouting and stabilization -earth reinforcement geosynthesics. [8Hrs]

UNIT-V

CO5

CO4

Geotechnical aspects of hazardous waste management - hazardous waste management environmental geotechnical consideration, Foundation on expansive soil -collapsible soil.

[5Hrs]

		October 2020	1.00	Applicable for AY 2020-21
Chairman (AC)	Chairman (BoS)	Date of Release	Version	Onwards

CO2

CO1

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) Courses of Study and Scheme of Examination of M. Tech

SCHEME OF EXAMINATION AND SYLLABUS

M-Tech. 2nd Semester Civil Engineering (Specialization in Geotechnical Engineering)

Text Books:

S.No.	Title	Authors	Edition	Publisher
1	Foundation Engineering	– R. B. Peck, W. E. Hanson, and T. H. Thornburn (John Wiley)	first	John Wiley
2	Soil Mechanics and Foundation Engineering	S.N. Murthy	second	DhanpatRai Publications

S. No.	Title	Authors	Edition	Publisher
1	Foundation Engineering in Difficult Ground	Bell F G	first	Butter Worth
2	Engineering Principles of Ground Modification	Hausmann M.R	first	McGraw Hill Publishing Company, New York
	Geo-synthetics World	Mandal J. N.	second	Wiley Eastern Limited

		October 2020	1.00	Applicable for AY 2020-21
Chairman (AC)	Chairman (BoS)	Date of Release	Version	Onwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

Courses of Study and Scheme of Examination of M. Tech

SCHEME OF EXAMINATION AND SYLLABUS

M-Tech. 2nd Semester Civil Engineering (Specialization in Geotechnical Engineering)

Subject Code CE223291	Advance Geotech- Lab	L = 0	$\mathbf{T} = 0$	P = 10	Credits = 5
Evaluation Scheme	ESE	СТ	ТА	Total	ESE Duration
	075	-	75	150	3 Hours

Experiments to be performed (Minimum 10 experiments to be performed)

- 1. Cyclic tri-axial shear test
- 2. Pneumatic box shear test
- 3 Centrifugal modeling of Geotechnical problems.
- 4. Determination of swelling pressure of cohesive soils
- 5. Brazilian tensile strength of rock samples_
- 6. Determination of point load index of rock samples.
- 7. To determine safe bearing capacity of rocks.
- 8. Determination of rock porosity
- 9. Determination of RQD.
- 10. Visual Classification Tests.
- 11. Exploratory borings by different methods including auger boring, wash boring, percussion drilling and rotary drilling.
- 12. Resonant column test.

Text Books:

- 1. Shamsher Prakash, (1979) "Engineering Soil Testing", Nemichand, New Delhi.
- 2. Joesph E Bowles, "Engineering Properties of soil and their measurements", McGraw hill

- 1. John T. Germaine, Amy V. Germaine, (2009) "Geotechnical Laboratory Measurements", John Wiely
- 2. William Lambe, (2003) "Soil Tsting for Engineers", MIT.

		October 2020	1.00	Applicable for AY 2020-21 Onwards
Chairman (AC)	Chairman (BoS)	Date of Release	Version	Onwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

Courses of Study and Scheme of Examination of M. Tech

SCHEME OF EXAMINATION AND SYLLABUS

M-Tech. 2nd Semester Civil Engineering (Specialization in Geotechnical Engineering)

Subject Code CE223292	Geo-Tech Field Testing-II Lab	L = 0	T = 0	P = 10	Credits = 5
Evaluation Scheme	ESE	СТ	ТА	Total	ESE Duration
	075	-	75	150	3 Hours

Experiments to be performed (Minimum 10 experiments to be performed)

- 1. Determination of coefficient of elastic uniform compression using cyclic plate load test.
- 2. Geophysical Examination Electrical resistivity test.
- 3. Geo physical examination seismic refraction test.
- 4. Rock sampling techniques.
- 5. Determination of RMR.
- 6. Determination of pile load carrying capacity in clayey and sandy strata.
- 7. Study of ground penetration radar.
- 8. Bankelman beam test.
- 9. Study of the Block Vibration Test.
- 10. Study of the Field Vane Shear Test.
- 11. Determination of Chemical Properties of soil such as chloride, phosphorous, Potassium, Magnesium, calcium, Sodium etc.
- 12. Determination of pH and organic solids.

Text Books:

- 1. Shamsher Prakash, (1979) "Engineering Soil Testing", Nemichand, New Delhi.
- 2. Joesph E Bowles, "Engineering Properties of soil and their measurements", McGraw hill

- 1. John T. Germaine, Amy V. Germaine, (2009) "Geotechnical Laboratory Measurements", John Wiely
- 2. William Lambe, (2003) "Soil Tsting for Engineers", MIT.

		October 2020	1.00	Applicable for AY 2020-21
Chairman (AC)	Chairman (BoS)	Date of Release	Version	Unwards